Problem: Let $\gamma $ be the positively oriented circle in the complex plane given by $\{ z \in \mathbb{C} : \vert z -1 \vert = 1 \} $. The find the value of
\[
\frac{1}{2\pi \iota } \int \limits_\gamma \frac{\mathrm{d} z}{z^3 - 1}.
\]
Solution: We have
\[
z^3 -1 = (z -1 )(z- \omega )\left( z - \omega ^2 \right),
\]
where $\omega $ is a primitive third root of unity. We also note that $\omega $ and $\omega ^2$ are outside the given contour $\gamma $ and thus, the curve $\gamma $ contains only one singularity, that is, $z_0 = 1$. Therefore,
\begin{align*}
\frac{1}{2\pi \iota }\int \limits_\gamma \frac{1}{z^3 -1} \mathrm{d} z & = \frac{1}{2\pi \iota }\int \limits _\gamma \frac{1}{(z-1)\left( z^2 + z + 1 \right) }\mathrm{d} z \\
& = \frac{1}{2\pi \iota }\int \limits_\gamma \frac{f(z)}{z-1}\mathrm{d} z,~ f(z) = \frac{1}{z^2 + z + 1} \\
& = f(1) = \frac{1}{3}.
\end{align*}
Therefore,
\[
\frac{1}{2\pi \iota } \int \limits_\gamma \frac{\mathrm{d} z}{z^3 - 1} = \frac{1}{3}.
\]