Problem: Let $S$ be the set of all real numbers $a$ such that the solution of the initial value problem
\[
\frac{\mathrm{d}y}{\mathrm{d}x} = y(2-y),~ y(0) = a
\]
exists on $[0,\infty )$. Then find the minimum of the set $S$.
Solution: Let us solve the given differential equation.
\begin{align*}
\frac{\mathrm{d}y}{\mathrm{d}x} = y(2-y) & = \frac{\mathrm{d} y}{y (2-y) } = \mathrm{d} x \\
& \implies \frac{1}{2} \left( \frac{1}{y} - \frac{1}{2-y} \right) \mathrm{d} y = \mathrm{d} x \\
& \implies \frac{1}{2} \left( \ln y - \ln (2-y) \right) = x + c \\
& \implies \ln \frac{y}{2-y} = 2 (x + c) \\
& \implies \frac{y}{2-y} = e^{2x + 2c} \\
& \implies \frac{y}{2-y} = C e^{2x},~ C = e^{2c} \\
& \implies y = 2 C e^{2x} - C y e^{2x} \\
& \implies y \left( 1 + C e^{2x} \right) = 2C e^{2x} \\
& \implies y = \frac{2 C e^{2x}}{1 + C e^{2x}}.
\end{align*}
Now we will use the initial condition to see for what values of $a$ solution exists.
\begin{align*}
y(0) = a & \implies \frac{2C}{1 + C} = a \\
& \implies 2C = a + aC \\
& \implies C = \frac{a}{2 - a}.
\end{align*}
If $a = 2$, then solution does not exist, therefore the set $S$ will be $[0,\infty ) \setminus \{ 2 \} $ and hence the minimum of the set $S$ will be $0$.