Problem: Let $f(z)$ be the meromorphic function given by
\[
f(z) = \frac{z}{\left( 1- e^z \right) \sin z}.
\]
Find out the poles of the function $f(z)$. Also, determine which of them is simple.
Solution: Given that
\[
f(z) = \frac{z}{\left( 1 - e^z \right) \sin z} = \frac{g(z)}{h(z)}.
\]
Recall that $z = z_0$ is a pole of a meromorphic function $f(z) = \frac{g(z)}{h(z)}$ if $h\left( z_0 \right) = 0$. Here
\begin{align*}
h(z) = 0 \implies \left( 1 - e^z \right) \sin z = 0 & \implies 1 - e^z = 0 \text{ or } \sin z = 0 \\
& \implies z = 2\pi \iota n, \text{ or } z = n\pi, n \in \mathbb{Z} .
\end{align*}
Take $z = 2\pi \iota n$. Note that
\[
h^\prime (z) = -e^z \sin z + \left( 1 - e^z \right) \cos z.
\]
Now we will determine the order of each of the poles. We have,
\[
h^\prime (2 \pi \iota n) \neq 0, \text{ if } n\neq 0.
\]
therefore, for each $n\in \mathbb{Z}\setminus \{ 0 \} $ the poles $z = 2\pi \iota n$ are simple. On the other hand,
\[
h^\prime (0) = 0 \text{ and } h^{\prime\prime} (0) = -2
\]
and hence, $z=0$ is a pole of order $2$. Also, for $n\neq 0$,
\[
h^\prime (n \pi) \neq 0,
\]
hence these poles are also simple. Summarizing, the poles are
\[
\{ 2n\pi \iota : n \in \mathbb{Z} \} \cup \{ n \pi : n \in \mathbb{Z} \}.
\]
All poles except $z=0$ are simple.