21-07-2023

Problem: Consider the initial value problem \[ \frac{\mathrm{d}y}{\mathrm{d}x} + \alpha y = 0,~ y(0) = 1,~ \alpha \in \mathbb{R} . \] Find the value of $\alpha \in \mathbb{R} $ such that $y(1) = 2$.
Solution: We have \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} + \alpha y = 0 & \implies \frac{\mathrm{d}y}{y} + \alpha \mathrm{d} x = 0 \\ & \implies \ln y + \alpha x = \ln c \\ & \implies y = c e^{- \alpha x} . \end{align*} Now we will use the initial condition to determine the value of the constant $c$. \begin{align*} y(0) = 1 & \implies c = 1. \end{align*} Therefore, $y(x) = e^{-\alpha x}$. Now given that \begin{align*} y(1) = 2 & \implies e^{-\alpha } = 2 \implies \alpha = -\ln 2. \end{align*}