18-07-2023

Problem: Find the radius of convergence of the series \[ \sum_{n=1}^{\infty} \frac{n^3}{3^n}z^n,~ z \in \mathbb{C} . \]
Solution: We recall that if $R$ is the radius of convergence, then \begin{align*} \frac{1}{R} & = \lim_{n \to \infty} \left\vert \frac{\frac{(n+1)^3}{3^{n+1}}}{\frac{n^3}{3^n}} \right\vert = \lim_{n \to \infty} \left\vert \frac{(n+1)^3}{3n^3} \right\vert = \frac{1}{3}. \end{align*} Therefore, the radius of convergence will be $3$.