Problem: Let $U \subset \mathbb{R} $ be any open set and $f: U \to \mathbb{R} $ be a function. Let $a \in U$.
-
If $\displaystyle \lim_{x \to a} f(x) = l$, then show that $\displaystyle \lim_{x \to a} \vert f(x) \vert = \vert l \vert $.
-
Show that the converse need not be true.