Let us first check that the above map is well-defined, in the sense that if $\lVert \mathbf{x} \rVert \leq r_1$, then $\left\lVert f\left( \mathbf{x} \right) \right\rVert \leq r_2$. \begin{align*} \left\lVert f\left( \mathbf{x} \right) \right\rVert = \left\lVert \mathbf{x} \cdot \frac{r_2}{r_1} \right\rVert = \lVert \mathbf{x} \rVert \left\vert \frac{r_2}{r_1} \right\vert \leq r_1 \frac{r_2}{r_1} = r_2. \end{align*} Clearly, $f$ is continuous and injective. As \[ f\left( \mathbf{x} \right) = f\left( \mathbf{y} \right) \implies \mathbf{x} \cdot \frac{r_2}{r_1} = \mathbf{y} \cdot \frac{r_2}{r_1} \implies \mathbf{x} = \mathbf{y} . \] The inverse of $f$ is defined as \[ f^{-1} (\mathbf{y} ) = \mathbf{y} \cdot \frac{r_1}{r_2},\kern 0.5cm \mathbf{y} \in D_{r_2}, \] which is also continuous. Therefore, $f$ is a homeomorphism between the two discs.