Problem: Prove that if $\left( x_n \right) $ is convergent, then $\left( \left\vert x_n \right\vert \right) $ is convergent. What about the converse.
Solution: Let $\varepsilon > 0$ be given. Since $\left( x_n \right) $ is convergent, say converges to $x$, then there exists $n_0\in \mathbb{N} $ such that for every $n\geq n_0$,
\[
\left\vert x_n - x \right\vert \lt \varepsilon .
\]
We claim that $\left( \left\vert x_n \right\vert \right) $ converges to $\vert x \vert $. We recall that
\[
\vert \vert a \vert - \vert b \vert \vert \leq \vert a-b \vert .
\]
Note that for $n\geq n_0$ we have
\[
\left\vert \vert x_n \vert - \vert x \vert \right\vert \leq \left\vert x_n - x \right\vert \lt \varepsilon,
\]
which proves the claim.
The converse need not be true, for example, take $x_n = (-1)^n$. Then $\left\vert x_n \right\vert = 1$, which is convergent but $\left( x_n \right) $ does not.