17-06-2023

Problem: A random variable $X$ has the probability density function \[ f_X(x) = \begin{dcases} k x^2 e^{-\lambda x}, &\text{ if } x \geq 0 ;\\ 0, &\text{ if } \text{ otherwise}, \end{dcases} \] where $\lambda > 0$. Find the value of $k$. Also find out the commutative distribution function of $X$.

Solution: Since $f$ is a probability density function, the integral should be $1$. That is, \begin{align*} \int_{\infty }^{\infty } f_X(x)~\mathrm{d} x = 1 & \implies \int _0^{\infty} kx^2 e^{-\lambda x} \mathrm{d}x = 1 \\ & \implies k \int_0^{\infty} x^2 e^{-\lambda x}\mathrm{d} x = 1. \end{align*} We will use the integration by parts to compute tha above integral. Take $u = x^2$ and $\mathrm{d}v = e^{-\lambda x}~\mathrm{d}x$. Then \[ du = 2x~\mathrm{d}x, \text{ and } v = -\frac{1}{\lambda}e^{-\lambda x} \] Recall that \[ \int u~\mathrm{d}v = uv - \int v~\mathrm{d}u. \]


Therefore, \begin{align*} \int_0^\infty x^2 e^{-\lambda x}~\mathrm{d}x & = \left[-\frac{1}{\lambda}x^2 e^{-\lambda x}\right]_0^\infty - \int_0^\infty \left(-\frac{1}{\lambda}e^{-\lambda x}\right)(2x~\mathrm{d}x) \\[1ex] & = \frac{2}{\lambda }\int _0^{\infty} x e^{-\lambda x}~\mathrm{d}x \\ & = \frac{2}{\lambda } \left[ -\frac{1}{\lambda } x e^{-\lambda x} \right]_0^{\infty} - \frac{2}{\lambda } \int _0^{\infty} \left( -\frac{1}{\lambda}e^{-\lambda x} \right) \mathrm{d}x \\ & = \frac{2}{\lambda ^2} \int _0^{\infty} e^{-\lambda x}\mathrm{d}x \\ & = \frac{2}{\lambda ^2}\left[ -\frac{1}{\lambda } \right] _0^{\infty} \\ & = \frac{2}{\lambda ^3}. \end{align*} Therefore, we have \begin{align*} \int_{\infty }^{\infty } f_X(x)~\mathrm{d} x = 1 & \implies k \left( \frac{2}{\lambda ^3} \right) = 1\\ & \implies k = \frac{\lambda ^3}{2}. \end{align*}


Now we need to find the corresponding cumulative distribution function (CDF). Recall that the CDF will be \[ F_X(x) = \int _{-\infty }^x f_X(t)~\mathrm{d}t. \] When $x \lt 0$, the integral is equal to $0$. When $x\geq 0$, we use again the integrating by parts to find the CDF. \begin{align*} F_X(x) & = \int _0^x f_X(t)~\mathrm{d}t \\ & = \frac{\lambda ^3}{2} \int _0^x t^2 e^{-\lambda t}~\mathrm{d}t \\ & = \frac{\lambda ^3}{2} \left[ -t^2 \left( \frac{1}{\lambda }e^{-\lambda t} \right)_0^x + \int_0^x \frac{2t}{\lambda }e^{-\lambda t}\right] \\ & = \frac{\lambda ^3}{2} \left[ \frac{-x^2 e^{-\lambda x}}{\lambda } + \frac{2}{\lambda }\left[ \left( -\frac{t}{\lambda}e^{-\lambda t} \right)_0^x - \int _0^x \frac{-e^{-\lambda t}}{\lambda } \mathrm{d}t \right] \right] \\ & = \frac{\lambda ^3}{2}\left[ \frac{-x^2 e^{-\lambda x}}{\lambda } - \frac{2x e^{-\lambda x}}{\lambda ^2} + \frac{2}{\lambda ^2}\left( -\frac{e^{-\lambda t}}{\lambda } \right)_0^x \right] \\ & = \frac{\lambda ^3}{2}\left[ \frac{-x^2 e^{-\lambda x}}{\lambda } - \frac{2x e^{-\lambda x}}{\lambda ^2} - \frac{2}{\lambda ^2}\left( \frac{e^{-\lambda x}}{\lambda } - \frac{1}{\lambda } \right) \right] \\ & = 1 - \left( 1 + \lambda x + \frac{\lambda ^2 x^2}{2} \right) e^{-\lambda x}. \end{align*} Thus, the CDF will be \[ F_X(x) = 1 - \left( 1 + \lambda x + \frac{\lambda ^2 x^2}{2} \right) e^{-\lambda x}. \]