Problem: Prove or disprove the following:
-
Let $A$ and $B$ be subsets of a topological space $X$ with $A \subsetneq B$. Then $\mathrm{int}(A) \subsetneq \mathrm{int}(B)$.
-
If $A$ is an open subset of a topological space $X$. Then $A = \mathrm{int}\left( \bar{A}\right)$.