Problem: Let $p$ be a prime number and let $G = \left( \frac{\mathbb{Z} }{p\mathbb{Z} } \right) ^\times$ be the multiplicative group of order $p-1$.
-
Prove that the set $\mathcal{S} = \left\{ x^2 : x\in G \right\}$ is a subgroup of $G$.
-
Find out the index of $\mathcal{S} $ in $G$.
-
Assume that $-1 \notin \mathcal{S} $. Then prove that for all $a\in G$ we have either $a \in \mathcal{S} $ or $-a\in \mathcal{S} $.