Problem: Let $G$ and $H$ be two groups. Let $\phi : G \to H$ be a homomorphism. Prove that $\phi \left( x^n \right) = \phi (x)^n$ for every $n\in \mathbb{Z} $ and $x\in G$.
Solution: Let $x\in G$. Let $n\in \mathbb{N} $. We will prove that $\phi \left( x^n \right) = \phi (x)^n$ by the mathematical induction.
Now note that \[ \phi \left( x^{-1} \right) \cdot \phi (x) = \phi \left( x^{-1} \cdot x \right) = \phi (e) = e. \] The above implies \[ \phi \left( x^{-1} \right) = \phi (x)^{-1} . \] Take $y=x^{-1} $. Then \[ \phi \left( x^{-n} \right) = \phi \left( y^n \right) = \phi (y)^n = \phi \left( x^{-1} \right) ^n = \phi (x)^{-n}. \] Hence, for every $n\in \mathbb{Z} $ and $x\in G$ we have \[ \phi \left( x^n \right) = \phi (x)^n. \]