Problem: Given a set $A\subseteq (X,\mathcal{T})$, the boundary of $A$ is defined as
\[
\partial A \coloneqq \left\{ x\in X: \forall~U\in \mathcal{T}, \text{ such that } x\in U, U\cap A \neq \emptyset \text{ and } U \cap A^c \neq \emptyset \right\}.
\]
Give three distinct subsets of $\mathbb{R} $ whose boundary is $\mathbb{Z} $.
Solution: Let us write three equivalent definitions of boundary of a set $A \subseteq X$. Let $\bar{A} $ denotes the closure of $A$ in $X$ and $\mathrm{int}(A) $ denotes the interior of $A$ in $X$.
-
Definition given in the problem.
-
$\partial A = \bar{A} \setminus \mathrm{int}(A) $.
-
$\partial A = \bar{A} \cap \overline{\left( X\setminus A \right)}$.
Consider the following subsets:
-
Take $A=\mathbb{Z} $. We claim that $\partial \mathbb{Z} =\mathbb{Z} $. Let $n\in \mathbb{Z} $. Take any neighborhood of $n$, say $U$ is an open neighborhood of $n$. We have
\[
n\in U\cap \mathbb{Z},
\]
so, $U$ intersects $\mathbb{Z} $. Now we need to show that it intersects $\mathbb{Z} ^c$. But this is clear as $U$ is an open subset of $\mathbb{R} $ containing $n$ and hence there exists $\varepsilon >0$ such that $(n-\varepsilon ,n+\varepsilon )\subseteq U$. Therefore, $U$ intersects $\mathbb{Z} ^c$ . Thus, $n\in \partial Z$ and hence, $\partial \mathbb{Z} \subseteq \mathbb{Z} $.
On the other hand, if $x\in \partial \mathbb{Z} $, and $x\notin \mathbb{Z} $, then let $n$ be the integer such that $n \lt x \lt x+1$. Here $n=[x]$, where $[x]$ is the greatest integer function of $x$. Take
\[
\varepsilon = \min \left\{ x-n, n+1-x \right\}.
\]
Then, the open set $U = (x-\varepsilon ,x+\varepsilon )$ does not intersect $\mathbb{Z} $ and hence we $x\notin \partial \mathbb{Z} $. Therefore, we got a contradiction. Hence, if $x\in \partial \mathbb{Z} $, then $x\in \mathbb{Z} $. This proves that $\partial \mathbb{Z} \subseteq \mathbb{Z} $ and hence, $\partial \mathbb{Z} = \mathbb{Z} $.
-
Take $A = \mathbb{Z} \cup (1,2)$. Let us prove that the boundary $A$ is $\mathbb{Z} $ with the second definition. Recall that
\[
\overline{A \cup B} = \bar{A} \cup \bar{B}
\]
\begin{align*}
\bar{A} & = \overline{\mathbb{Z} \cup (1,2)} \\
& = \overline{\mathbb{Z} } \cup \overline{(0,1)} \\
& = \mathbb{Z} \cup [1,2] \\
& = \mathbb{Z} \cup (1,2).
\end{align*}
We need to determine the interior of $\mathbb{Z} \cup (1,2)$. We claim that
\[
\mathrm{int}\left( \mathbb{Z} \cup (1,2) \right) = (1,2).
\]
It is clear that $(1,2)\subseteq \mathrm{int}\left( \mathbb{Z} \cup (1,2) \right) $. For the reverse inequality, let $x\in \mathrm{int}\left( \mathbb{Z} \cup (1,2) \right) $. We need to show that $x\in (1,2)$. Suppose that $x\notin (1,2)$. Since we know that for any subset $A$ we have $\mathrm{int}(A) \subseteq A $. Therefore, $\mathrm{int}\left( \mathbb{Z} \cup (1,2) \right) \subseteq \mathbb{Z} \cup (1,2)$. Since $x\notin (1,2)$, so $x$ must be an integer. Thus any open neighborhood of $x$ does not contain in $A$ and hence $x$ can not be an interior point. Therefore, $x\in (1,2)$. Hence,
\[
\mathrm{int}\left( \mathbb{Z} \cup (1,2) \right) = (1,2).
\]
Therefore,
\begin{align*}
\partial A & = \bar{A} \setminus \mathrm{int} (A) \\
& = \left( \mathbb{Z} \cup (1,2) \right) \setminus (1,2) \\
& = \mathbb{Z} .
\end{align*}
-
Take $A= \mathbb{Z} \cup (2,3)$.