22-03-2023

Problem: Find out the inverse of the following elements.

  1. $\begin{pmatrix} 1 & 0 \\ 2 & 2 \\ \end{pmatrix}$ in $\left( \mathbb{Z} _3, \times \right) $.
  2. $\begin{pmatrix} 2 & 3 \\ 1 & 2 \\ \end{pmatrix}$ in $ \left( \mathbb{Z} _5, \times \right) $.
  3. $\begin{pmatrix} 1 & 0 \\ 2 & 2 \\ \end{pmatrix}$ in $\left( \mathbb{Z} _7,\times \right) $.

Solution: We will find the inverse of each matrix in $\mathbb{R} $ and then will convert them to the corresponding field.

  1. The inverse of \[ \begin{pmatrix} 1 & 0 \\ 2 & 2 \\ \end{pmatrix} ^{-1} = \frac{1}{2} \begin{pmatrix} 2 & 0 \\ -2 & 1 \\ \end{pmatrix} = 2^{-1} \begin{pmatrix} 2 & 0 \\ -2 & 1 \\ \end{pmatrix} . \] Note that \[ 2^{-1} \equiv 2 \text{ mod } 3 \text{ and } -2 \equiv 1 \text{ mod } 3. \] Therefore, \begin{align*} \begin{pmatrix} 1 & 0 \\ 2 & 2 \\ \end{pmatrix} ^{-1} & = 2^{-1} \begin{pmatrix} 2 & 0 \\ -2 & 1 \\ \end{pmatrix} \\[1ex] & \equiv 2 \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ \end{pmatrix} \text{ mod } 3 \\[1ex] & \equiv \begin{pmatrix} 1 & 0 \\ 2 & 2 \\ \end{pmatrix} \text{ mod } 3. \end{align*} Hence, \[ \begin{pmatrix} 1 & 0 \\ 2 & 2 \\ \end{pmatrix} ^{-1} = \begin{pmatrix} 1 & 0 \\ 2 & 2 \\ \end{pmatrix}. \]

  2. The inverse of \[ \begin{pmatrix} 2 & 3 \\ 1 & 2 \\ \end{pmatrix} ^{-1} = \frac{1}{1} \begin{pmatrix} 2 & -3 \\ -1 & 2 \\ \end{pmatrix} = \begin{pmatrix} 2 & -3 \\ -1 & 2 \\ \end{pmatrix} . \] Note that \[ -3 \equiv 2\text{ mod } 5 \text{ and } -1 \equiv 4\text{ mod } 5. \] Therefore, \begin{align*} \begin{pmatrix} 2 & 3 \\ 1 & 2 \\ \end{pmatrix} ^{-1} & = \begin{pmatrix} 2 & -3 \\ -2 & 1 \\ \end{pmatrix} \\[1ex] & \equiv \begin{pmatrix} 2 & 2 \\ 4 & 2 \\ \end{pmatrix} \text{ mod } 5. \end{align*} Hence, \[ \begin{pmatrix} 2 & 3 \\ 1 & 2 \\ \end{pmatrix} ^{-1} = \begin{pmatrix} 2 & 2 \\ 4 & 2 \\ \end{pmatrix}. \]

  3. The inverse of \[ \begin{pmatrix} 3 & 6 \\ 4 & 5 \end{pmatrix} ^{-1} = \frac{1}{-9} \begin{pmatrix} 5 & -6 \\ -4 & 3 \end{pmatrix} = (-9)^{-1} \begin{pmatrix} 5 & -6 \\ -4 & 3 \end{pmatrix}. \] Note that \begin{align*} (-9)^{-1} & \equiv 5^{-1} \text{ mod } 7 \equiv 3 \text{ mod } 7, \\ -4 & \equiv 3 \text{ mod } 7, \\ -6 & \equiv 1 \text{ mod } 7. \end{align*} Therefore, \begin{align*} \begin{pmatrix} 3 & 6 \\ 4 & 5 \end{pmatrix} ^{-1} & = (-9)^{-1} \begin{pmatrix} 5 & -6 \\ -4 & 3 \end{pmatrix} \\[1ex] & \equiv 3\begin{pmatrix} 5 & 1 \\ 3 & 3 \end{pmatrix} \text{ mod } 7 \\[1ex] & \equiv \begin{pmatrix} 1 & 3 \\ 2 & 2 \\ \end{pmatrix} \text{ mod } 7. \end{align*} Hence, \[ \begin{pmatrix} 3 & 6 \\ 4 & 5 \end{pmatrix} ^{-1} = \begin{pmatrix} 1 & 3 \\ 2 & 2 \\ \end{pmatrix}. \]