Problem: Let \[ f(z) = \frac{(z-2)^3 z^3}{(z+5)^3(z+1)^3(z-1)^4}. \] Compute the following integral. \[ \int_{\vert z \vert =3} \frac{f^\prime (z)}{f(z)}\mathrm{d} z. \]
Solution: We will use the Argument principle to solve this problem.
Therefore, we have \begin{equation}\label{eq:14Feb2023-1} \int_{\vert z \vert =3} \frac{f^\prime (z)}{f(z)}\mathrm{d} z = 2\pi \iota \left( Z-P \right). \end{equation} Here we have \[ \textup{Zeros} = \{2,2,2,0,0,0\},~\textup{Poles} = \{-1,-1,-1,1,1,1,1\}. \]
Thus, $Z=6$ and $P=7$. Therefore, using \eqref{eq:14Feb2023-1} we will get, \[ \int_{\vert z \vert =3} \frac{f^\prime (z)}{f(z)}\mathrm{d} z = 2\pi \iota (6-7) = -2\pi \iota. \]