Problem: Prove tha the following series converges. \[ \sum_{n=1}^{\infty} \frac{n}{n^4 - n^{2} + 1}. \]
Solution: Note that for $n\ge 2$, we have \begin{align*} & n^4 - n^2 + 1 > n^4 - n^{2} = n^2 \left( n^2 - 1 \right) > n^2\times \frac{n^2}{2} > 0. \end{align*} Therefore, we have \begin{align*} & 0 \lt \frac{1}{n^4 - n^2 + 1} \lt \frac{2}{n^4} \\ \implies & 0 \lt \frac{n}{n^4 - n^{2} +1} \lt \frac{2}{n^3}. \end{align*} We will now use the comparison test for the convergence of the given series.
Note that using the $p$ series test, which says that $\sum \frac{1}{n^p}$ converges if and only if $p>1$, the series \[ \sum_{n=1} ^ \infty \frac{2}{n^3} \] converges. Therefore, using the comparison test, the given series is convergent.