Problem: Let
\[
A = \begin{bmatrix}
0 & 0 & 0 & -4 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 5 \\
0 & 0 & 1 & 0 \\
\end{bmatrix}.
\]
Find out the Jordan canonical form of $A$.
Solution: et us find the eigenvalues of the given matrix.
\begin{align*}
\det (A - \lambda I) = 0 & \implies
\begin{vmatrix}
-\lambda & 0 & 0 & -4 \\
1 & -\lambda & 0 & 0 \\
0 & 1 & -\lambda & 5 \\
0 & 0 & 1 & -\lambda \\
\end{vmatrix} = 0 \\[1ex]
& \implies -\lambda
\begin{vmatrix}
-\lambda & 0 & 0 \\
1 & -\lambda & 5 \\
0 & 1 & -\lambda \\
\end{vmatrix} + 4
\begin{vmatrix}
1 & -\lambda & 0 \\
0 & 1 & -\lambda \\
0 & 0 & 1 \\
\end{vmatrix} = 0 \\[1ex]
& \implies \lambda ^2 \left( \lambda ^2 -5 \right) + 4 = 0 \\
& \implies \lambda ^4 - 5\lambda ^2 + 4 = 0 \\
& \implies (\lambda -1)(\lambda +1)(\lambda -2)(\lambda +2) = 0.
\end{align*}
Thus, the characteristic polynomial of $A$ will be
\[
p(x) = (x - 1)(x + 1)(x - 2)(x + 2).
\]
Since each of the factor only occurs once, the minimal polynomial will be same as the characteristic polynomial. Hence, the Jordan canonical form of $A$ will be
\[
J =
\begin{bmatrix}
\begin{bmatrix} 1 \end{bmatrix} & 0 & 0 & 0 \\
0 & \begin{bmatrix} -1 \end{bmatrix} & 0 & 0 \\
0 & 0 & \begin{bmatrix} 2 \end{bmatrix} & 0 \\
0 & 0 & 0 & \begin{bmatrix} -2 \end{bmatrix} \\
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & -2 \\
\end{bmatrix}.
\]