05-02-2023

Problem: Let $T:\mathbb{R} ^3\to \mathbb{R}^2 $ be defined as \[ T \left( \begin{bmatrix} x \\ y \\ z \\ \end{bmatrix} \right) = \begin{bmatrix} x+2y \\ 3x-2y \\ \end{bmatrix}. \]

  1. Show that $T$ is a linear transformation.
  2. Find out the matrix of $T$ with respect to the standard basis.

Solution: Recall that if $V$ and $W$ are vector spaces over $\mathbb{R} $, then $T:V\to W$ is a linear transformation if \[ T\left( \alpha v_1+v_2 \right) = \alpha T\left( v_1 \right) + T\left( v_2 \right) \] for $v_1,v_2\in V$ and $\alpha \in \mathbb{R} $.
  • Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^3$ and $\alpha \in \mathbb{R} $ be given. Then \begin{align*} T(\alpha \mathbf{x} + \mathbf{y} ) & = T \left( \alpha \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \end{bmatrix} \right) \\[1ex] & = T \left( \begin{bmatrix} \alpha x_1 + y_1 \\ \alpha x_2 + y_2\\ \alpha x_3 + y_3\\ \end{bmatrix} \right) \\ & = \begin{bmatrix} \alpha x_1 + y_1 + 2\left( \alpha x_2 + y_2 \right) \\ 3\left( \alpha x_1 + y_1 \right) - 2\left( \alpha x_2 + y_2 \right) \\ \end{bmatrix} \\[1ex] & = \begin{bmatrix} \alpha x_1 + 2\alpha x_2 \\ 3\alpha x_1 - 2\alpha x_2 \\ \end{bmatrix} + \begin{bmatrix} y_1 + 2y_2 \\ 3y_1 - 2y_2 \\ \end{bmatrix} \\ & = \alpha T \left( \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \end{bmatrix} \right) + T \left( \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \end{bmatrix} \right). \end{align*} Thus, $T$ is a linear transformation.

  • We need to find the matrix of $T$ with respect to the standard basis. We denote the standard basis of $R^n$ by $\mathbf{e}_1, \mathbf{e} _2,\dots, \mathbf{e} _n$, where $\mathbf{e} _i$ has $1$ only at the $i$th place and other coordinates are zero. We have \begin{align*} T \left( \mathbf{e} _1 \right) & = \begin{bmatrix} 1 \\ 3 \\ \end{bmatrix} = 1\cdot \mathbf{e} _1 + 3 \mathbf{e} _2 \\[1ex] T\left( \mathbf{e} _2 \right) & = \begin{bmatrix} 2 \\ -2 \\ \end{bmatrix} = 2 \mathbf{e} _1 - 2 \mathbf{e} _2 \\[1ex] T \left( \mathbf{e} _3 \right) & = \begin{bmatrix} 0 \\ 0 \\ \end{bmatrix} = 0 \cdot \mathbf{e} _1 + 0 \cdot \mathbf{e} _2. \end{align*} Thus, the matrix of $T$ with respect to the standard basis will be \[ [T] = \begin{bmatrix} 1 & 2 & 0 \\ 3 & -2 & 0 \\ \end{bmatrix}. \]