Problem: Let $(X,d)$ be a metric space. Define a metric
\[
\rho (x,y) = \frac{d(x,y)}{1+d(x,y)}.
\]
Prove that both metric are equivalent.
Solution: We recall that two metrics $d_1$ and $d_2$ on a set $X$ are equivalent, if for any $x\in X$ and $r > 0$, there exist $s_1,s_2 >0$ such that
\[
B_{d_1}(x,s_1) \subseteq B_{d_2}(x,r) \text{ and } B_{d_2}(x,s_2) \subseteq B_{d_1}(x,r).
\]
To prove that the metrics $d$ and $\rho $ are equivalent, we will show that for any $x\in X$ and $r>0$ there exist $s_1, s_2 >0$ such that
\[
B_\rho (x,s_1) \subseteq B_d(x,r) \subseteq B_\rho (x,s_2).
\]
Take
\[
s_1 = \frac{r}{1+r}.
\]
Then, for any $y \in B_\rho (x,s_1)$
\[
\rho (x,y) \lt s_1 = \frac{r}{1 + r} \implies \frac{d(x,y)}{1 + d(x,y)} \lt \frac{r}{1+r} \implies d(x,y) \lt r,
\]
and hence, $y\in B_d(x,r)$. This proves that $B_\rho (x,s_1) \subseteq B_d(x,r)$.
Now for the other inequality, we take
\[
s_2 = \frac{r}{1 + r}.
\]
Then, for any $y\in B_d(x,r)$,
\begin{align*}
d(x,y) \lt r & \implies \frac{1}{d(x,y)} \gt \frac{1}{r} \\
& \implies 1 + \frac{1}{d(x,y)} \gt 1 + \frac{1}{r} \\
& \implies \frac{1 + d(x,y)}{d(x,y)} \gt \frac{1 + r}{r} \\
& \implies \frac{d(x,y)}{1 + d(x,y)} \lt \frac{r}{1 + r} \\
& \implies \rho (x,y) \lt s_2.
\end{align*}
Thus, we obtained the other inequality. Hence, the metrics $d$ and $\rho $ are equivalent.