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Definition (Morse-Bott functions)

Let M be a Riemannian manifold. A smooth submanifold N C M is said to be
non-degenerate critical submanifold of f : M — Rif N C Cr(f) and for any
p € N, Hess(f) is non-degenerate in the direction normal to N at p.
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f the cut locus

se-Bott Function

Definition (Morse-Bott functions)

Let M be a Riemannian manifold. A smooth submanifold N C M is said to be
non-degenerate critical submanifold of f : M — Rif N C Cr(f) and for any
p € N, Hessp(f) is non-degenerate in the direction normal to N at p.

The Hess)(f) is non-degenerate in the direction normal to [V at p means for any

V € (TpN)* there exists W € (T}, N)* such that Hess, (f)(V, W) # 0.
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f the cut locus

e-Bott Function

Definition (Morse-Bott functions)

Let M be a Riemannian manifold. A smooth submanifold N C M is said to be
non-degenerate critical submanifold of f : M — Rif N C Cr(f) and for any
p € N, Hessy(f) is non-degenerate in the direction normal to N at p. The
function f is said to be Aorse-Bort if the connected components of Cr( f) are
non-degenerate critical submanifolds.

The Hess)( f) is non-degenerate in the direction normal to IV at p means for any

V € (TpN)* there exists W € (T}, N)* such that Hess, (f)(V, W) # 0.
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Definition (Distance minimal geodesic)

A geodesic 7y is called a distance minimal geodesic joining N to p if there exists
qgeN
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locus of a submanifold

Definition (Distance minimal geodesic)

A geodesic 7y is called a distance minimal geodesic joining N to p if there exists
g € N such that vy is a minimal geodesic joining g to p
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locus of a submanifold

Definition (Distance minimal geodesic)

A geodesic 7y is called a distance minimal geodesic joining N to p if there exists
q € N such that vy is 2 minimal geodesic joining ¢ to p and () = d(p, N).
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Definition (Distance minimal geodesic)
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Definition (Distance minimal geodesic)
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Let M be a Riemannian manifold
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Gec aspec he cut locus

ocus of a submanifold

Definition (Distance minimal geodesic)

A geodesic 7y is called a distance minimal geodesic joining N to p if there exists
q € N such that vy is a minimal geodesic joining ¢ to p and () = d(p, N ). We
will call such geodesics as N -geodesics.

Definition (Cut locus)

Let M be a Riemannian manifold and [V be any non-empty subset of M.
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f the cut locus

ocus of a submanifold

Definition (Distance minimal geodesic)

A geodesic 7y is called a distance minimal geodesic joining N to p if there exists
q € N such that vy is a minimal geodesic joining ¢ to p and () = d(p, N ). We
will call such geodesics as N -geodesics.

Definition (Cut locus)

Let M be a Riemannian manifold and IV be any non-empty subset of M. If
Cu(N) denotes the cuz locus of N,
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f the cut locus

ycus of a submanifold

Definition (Distance minimal geodesic)

A geodesic 7y is called a distance minimal geodesic joining N to p if there exists
q € N such that vy is a minimal geodesic joining ¢ to p and () = d(p, N ). We
will call such geodesics as N -geodesics.

Definition (Cut locus)

Let M be a Riemannian manifold and IV be any non-empty subset of M. If
Cu(NN) denotes the cz locus of N, then we say that ¢ € Cu(N) if there exists an
N-geodesic joining N to q
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Gec aspec he cut locus

cus of a submanifold

Definition (Distance minimal geodesic)

A geodesic 7y is called a distance minimal geodesic joining N to p if there exists
q € N such that vy is a minimal geodesic joining ¢ to p and () = d(p, N ). We
will call such geodesics as N -geodesics.

Definition (Cut locus)

Let M be a Riemannian manifold and IV be any non-empty subset of M. If
Cu(NN) denotes the cz locus of N, then we say that ¢ € Cu(N) if there exists an
N-geodesic joining IV to ¢ such that any extension of it beyond ¢ is not a distance

minimal geodesic.
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rating set of [V

Definition (Separating set)

Let N be a subset of a Riemannian manifold M. The separating set, denoted by

Se(IV), consists of all points ¢ € M such that at least two distance minimal
geodesics from N to g exist.
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f the cut locus

Definition (Separating set)

Let N be a subset of a Riemannian manifold M. The separating set, denoted by
Se(IV), consists of all points ¢ € M such that at least two distance minimal
geodesics from N to g exist.

Theorem (Basu S., Prasad S., 2021)

For a complete Riemannian manifold M and a compact submanifold N of M,
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1 illuminating example
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illuminating example

Let M = M (n,R), the set of n X n matrices, and N = O(n,R), set of all
orthogonal 7 X m matrices.
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orthogonal n X n matrices. We fix the standard Euclidean metric on M (n,R) by
identifying it with R"”.
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Let M = M (n,R), the set of n X n matrices, and N = O(n,R), set of all
orthogonal n X n matrices. We fix the standard Euclidean metric on M (n,R) by
identifying it with R™”. This induces a distance function given by

d(A,B):=\/tr((A- B)T(A-B)), A,B€M(nR)
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lluminating example

Let M = M (n,R), the set of n X n matrices, and N = O(n,R), set of all
orthogonal n X n matrices. We fix the standard Euclidean metric on M (n,R) by
identifying it with R™”. This induces a distance function given by

d(A,B):=\/tr((A- B)T(A-B)), A,B€M(nR)
Consider the distance squared function

f:Mn,R) =R, A d*(A,0(n,R)).
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Geometric aspects of the cut locus

o The functionis f(A) = n+ tr (ATA) - 2tr (VATA).

41/ 95



Geometric aspects of the cut locus

o The function is f(A) =n+tr (ATA) —26r (VAT A).
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Geometric aspects of the cut locus

o The function is f(A) =n+tr (ATA) —26r (VAT A).
o Itis differentiable at A if and only if A is invertible.

e Itisa Morse-Bott function with critical submanifold as O(n,R).

43/ 95



Geometric aspects of the cut locus

(4]

The function is f(A) = n +tr (AT A) - 2tr (VAT A).
Itis differentiable at A if and only if A is invertible.

(4]

It is a Morse-Bott function with critical submanifold as O(n, R).

©

If v(t) is an integral curve of —V f initialized at A, then

‘C% = —2y(t) +2 (y(t)”yl ()T (t). (1)
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Geometric aspects of the cut locus

The function is f(A) = n +tr (AT A) - 2tr (VAT A).
Itis differentiable at A if and only if A is invertible.
It is a Morse-Bott function with critical submanifold as O(n, R).

If v(¢) is an integral curve of —V f initialized at A, then

-1

‘C% = —24(t) +2 (’y(t)T> () T().

The solution of (1) given by

A1) = A + (1 - ) A(VATA) | 4(0) = A.

(1)
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Geometric aspects of the cut locus

The function is f(A) = n +tr (AT A) - 2tr (VAT A).
Itis differentiable at A if and only if A is invertible.
It is a Morse-Bott function with critical submanifold as O(n, R).

If v(¢) is an integral curve of —V f initialized at A, then

-1

‘C% = —24(t) +2 (’y(t)T> () T().

The solution of (1) given by

A1) = A + (1 - ) A(VATA) | 4(0) = A.

Note that y(t) is a flow line which deforms GL(n,R) to O(n,R).

(1)

(2)
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Geometric aspects of the cut locus

The function is f(A) = n +tr (AT A) - 2tr (VAT A).
Itis differentiable at A if and only if A is invertible.
It is a Morse-Bott function with critical submanifold as O(n, R).

If v(¢) is an integral curve of —V f initialized at A, then

-1

B~ +2(:07) " VAOT0. 0

The solution of (1) given by
-1
Y(t) = Ae ? + (1—e ) A(VATA) , 4(0) = A, (2)

Note that y(t) is a flow line which deforms GL(n,R) to O(n,R).

The separating set of O(n, R) in M (n,R) is set of singular matrices and as it
is closed, the cut locus is the same.
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sults generalized from the example

Theorem
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Theorem

Let M be a connected, complete Riemannian manifold and N be an embedded
submanifold of M. Suppose two N -geodesics exists joining N to g € M Then
d%(N,-) : M — R has no directional derivative at q
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Geometric aspects of the cut locus

Its generalized from the example

Theorem

Let M be a connected, complete Riemannian manifold and N be an embedded
submanifold of M. Suppose two N -geodesics exists joining N to g € M Then
d?(N,-) : M — R bhas no directional derivative at q for vectors in direction of those
two N -geodestc.
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Theorem

Let M be a connected, complete Riemannian manifold and N be an embedded
submanifold of M. Suppose two N -geodesics exists joining N to g € M Then

d?(N,-) : M — R bhas no directional derivative at q for vectors in direction of those

two N -geodestc.

Theorem
Let M be a complete Riemannian manifold
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Theorem
Let M be a connected, complete Riemannian manifold and N be an embedded
submanifold of M. Suppose two N -geodesics exists joining N to g € M Then

d?(N,-) : M — R bhas no directional derivative at q for vectors in direction of those

two N -geodestc.
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Let M be a complete Riemannian manifold and N be compact submanifold of M.
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Its generalized from the example

Theorem

Let M be a connected, complete Riemannian manifold and N be an embedded
submanifold of M. Suppose two N -geodesics exists joining N to g € M Then

d?(N,-) : M — R bhas no directional derivative at q for vectors in direction of those

two N -geodestc.

Theorem

Let M be a complete Riemannian manifold and N be compact submanifold of M.

Then N is a deformation retract of M — Cu(NN).

57/95



he cut locus

s generalized from the example

Theorem

Let M be a connected, complete Riemannian manifold and N be an embedded
submanifold of M. Suppose two N -geodesics exists joining N to g € M Then
d?(N,-) : M — R bhas no directional derivative at q for vectors in direction of those
two N -geodestc.

Theorem

Let M be a complete Riemannian manifold and N be compact submanifold of M.
Then N is a deformation retract of M — Cu(NN).

Theorem

The cut locus Cu(NN ) is a strong deformation retract of M — N.
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s generalized from the example

Theorem

Let M be a connected, complete Riemannian manifold and N be an embedded
submanifold of M. Suppose two N -geodesics exists joining N to g € M Then
d?(N,-) : M — R bhas no directional derivative at q for vectors in direction of those
two N -geodestc.

Theorem

Let M be a complete Riemannian manifold and N be compact submanifold of M.
Then N is a deformation retract of M — Cu(NN).

Theorem

The cut locus Cu(IN ) is a strong deformation retract of M — N. In particular,
(M,Cu(N)) is a good pair
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generalized from the example

Theorem

Let M be a connected, complete Riemannian manifold and N be an embedded
submanifold of M. Suppose two N -geodesics exists joining N to g € M Then
d?(N,-) : M — R bhas no directional derivative at q for vectors in direction of those
two N -geodestc.

Theorem

Let M be a complete Riemannian manifold and N be compact submanifold of M.
Then N is a deformation retract of M — Cu(NN).

Theorem

The cut locus Cu(IN ) is a strong deformation retract of M — N. In particular,
(M, Cu(N)) is a good pair and the number of path components of Cu(N) equals
that of M — N.
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f the cut locus

line of the proof of the deformation

Define
s:5(v) = [0,00], s(v) := sup{t € [0,00) | Yv][0,q is an N-geodesic},

where S(v) is the unit normal bundle of N and [0, 00] is the one-point
compactification of [0, 00).
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Define
s:5(v) = [0,00], s(v) := sup{t € [0,00) | Yv][0,q is an N-geodesic},

where S(v) is the unit normal bundle of N and [0, 00] is the one-point
compactification of [0,00). The map s is continuous

63/ 95



f the cut locus

line of the proof of the deformation

Define
s:5(v) = [0,00], s(v) := sup{t € [0,00) | Yv][0,q is an N-geodesic},

where S(v) is the unit normal bundle of N and [0, 00] is the one-point
compactification of [0,00). The map s is continuous and is finite if M is compact.
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line of the proof of the deformation

Define
s:5(v) = [0,00], s(v) := sup{t € [0,00) | Yv][0,q is an N-geodesic},

where S(v) is the unit normal bundle of N and [0, 00] is the one-point
compactification of [0,00). The map s is continuous and is finite if M is compact.
Note that the cut locus is

Cu(N) =exp, {s(v)v:ve S(v)},
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f the cut locus

line of the proof of the deformation

Define
s:5(v) = [0,00], s(v) := sup{t € [0,00) | Yv][0,q is an N-geodesic},

where S(v) is the unit normal bundle of N and [0, 00] is the one-point
compactification of [0,00). The map s is continuous and is finite if M is compact.
Note that the cut locus is

Cu(N) =exp, {s(v)v:ve S(v)},

where exp,, : v — M, exp,(p,v) := epr(”)-
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ine of the proof of the deformation

Define
s:5(v) = [0,00], s(v) := sup{t € [0,00) | Yv][0,q is an N-geodesic},

where S(v) is the unit normal bundle of N and [0, 00] is the one-point
compactification of [0, 00). The map s is continuous and is finite if M is compact.
Note that the cut locus is

Cu(N) =exp, {s(v)v:ve S(v)},

where exp,, : v — M, exp, (p,v) := exp,(v). Define an open neighborhood
Uy(N) of the zero section in the normal bundle as

Up(N):={av:0<a<s(v),veS)}.
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ne of the proof of the deformation

Define
s:5(v) = [0,00], s(v) := sup{t € [0,00) | Yv][0,q is an N-geodesic},

where S(v) is the unit normal bundle of N and [0, 00] is the one-point
compactification of [0, 00). The map s is continuous and is finite if M is compact.
Note that the cut locus is

Cu(N) =exp, {s(v)v:ve S(v)},

where exp,, : v — M, exp, (p,v) := exp,(v). Define an open neighborhood
Uy(N) of the zero section in the normal bundle as

Up(N):={av:0<a<s(v),veS)}.

Note that exp,, is a diffeomorphism on Uy (V) and set
U(N)=exp,(Uy(N)) = M — Cu(N).
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Gl exp, ' (p)

The space Uy (V') deforms to the zero section on the normal bundle.

73/ 95



Gl exp, ' (p)

The space Uy (V') deforms to the zero section on the normal bundle.

H:Uy(N) x[0,1] = Us(N), ((p,av),t) — (p,tav).



Geometric aspects of the cut locus

Now consider the following diagram:

Uo(N) % [0,1] —L—— Uy(N)

expulT lezp,,

Ux1[0,1] — U~ M~ Cu(N)
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Geometric aspects of the cut locus

Now consider the following diagram:

Uo(N) % [0,1] —L—— Uy(N)

expulT lezp,,

Ux[0,1] — U~ M—Cu(N)
The map F' can be defined by taking the compositions

F =exp,oHoexp, .
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Topological aspects of the cut locus
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aspects of the cut locus

Definition (Thom space)

Let m: E — B be a real vector bundle over a paracompact space B with a metric.

Let D(E) be the unit disk bundle and S(E) be the unit sphere bundle.
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aspects of the cut locus

Definition (Thom space)

Let m: E — B be a real vector bundle over a paracompact space B with a metric.
Let D(E) be the unit disk bundle and S(E) be the unit sphere bundle. Then the
Thom space of E, denote by Th(E) is the quotient Th(E) := D(E)/S(E).
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Topological aspects of the cut locus

space

Definition (Thom space)

Let m: E — B be a real vector bundle over a paracompact space B with a metric.
Let D(E) be the unit disk bundle and S(E) be the unit sphere bundle. Then the
Thom space of E, denote by Th(E) is the quotient Th(E) := D(E)/S(E).

Remark
If B is compact, then Th(E) is the one point compactification of E.
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Definition (Rescaled exponential)

The rescaled exponential map is defined to be

expp(s(0)v), ifv=|v|[o

D, ifv=0.

exp: D(v) — M, (p,v) — {
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Topological aspects of the cut locus

The rescaled exponential map is defined to be

~—

exp,(s(0)v), ifv=|v|d

exp: D(v) = M, (p,v) — ) =0

Since s is continuous, the rescaled exponential is also continuous and is surjective.
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al aspects of the cut locus

The rescaled exponential map is defined to be

~—

exp,(s(0)v), ifv=|v|d

exp: D(v) = M, (p,v) — ) =0

Since s is continuous, the rescaled exponential is also continuous and is surjective.

Also note thatexp(S(v)) = Cu(N).
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f the cut locus

Main Theorem

Theorem (Basu S., Prasad S., 2021)

Let N be an embedded submanifold inside a closed, connected Riemannian
manifold M. If v denotes the normal bundle of N in M, then there is a
homeomorphism

o

exp: D(v)/S(v) — M/Cu(N).
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plications

@ Theinclusion map i : Cu(N') < M induces a long exact sequence in
homology
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aspects of the cut locus

@ Theinclusion map i : Cu(N') < M induces a long exact sequence in
homology

-+ — H;(Cu(N)) i*—>H](M) — H;j(M,Cu(N)) 2>lETj_1(Cu(J\7))—>--~ ,
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vlications

@ Theinclusion map i : Cu(N') < M induces a long exact sequence in
homology

-+ — H;(Cu(N)) i*—>H](M) — H;j(M,Cu(N)) 3>lETj_1(Cu(J\7))—>--~ ,

SO

o+ = H;(Cu(N)) EN H;(M) 4, ﬁj(Th(u)) N H;_1(Cu(N)) —---

Q If N is a closed submanifold of M with [ components, and dim M = d,
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@ Theinclusion map i : Cu(N') < M induces a long exact sequence in
homology

-+ — H;(Cu(N)) i—>H](M) — H;j(M,Cu(N)) 3>1LIj_1(Cu(]\7))—>--~ ,

SO

o+ = H;(Cu(N)) EN H;(M) 4, ﬁj(Th(u)) N H;_1(Cu(N)) —---

Q@ If N is aclosed submanifold of M with [ components, and dim M = d, then
Hy_1(Cu(N)) is free abelian of rank [ — 1 and Hy_;(Cu(N)) = H? (M) if
J —2 > k, where k is the maximum of the dimension of the components of

N.
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@ Theinclusion map i : Cu(N') < M induces a long exact sequence in
homology

-+ — H;(Cu(N)) i—>HJ(M) — H;j(M,Cu(N)) 3>lETj_1(Cu(]\7))—>--~ ,

SO

o+ = H;(Cu(N)) LN H;(M) 4, ﬁj(Th(y)) N H;_1(Cu(N)) —---

Q@ If N is aclosed submanifold of M with [ components, and dim M = d, then
Hy_1(Cu(N)) is free abelian of rank [ — 1 and Hy_;(Cu(N)) = H? (M) if
J —2 > k, where k is the maximum of the dimension of the components of

N.

@ Let N be a smooth homology k-sphere, & > 0, embedded in a smooth
Riemannian manifold M homeomorphic to S d.
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cations

@ Theinclusion map i : Cu(N') < M induces a long exact sequence in
homology

-+ — H;(Cu(N)) i—>HJ(M) — H;j(M,Cu(N)) 3>lETj_1(Cu(]\7))—>--~ ,

SO

o+ = H;(Cu(N)) LN H;(M) 4, ﬁj(Th(y)) N H;_1(Cu(N)) —---

Q@ If N is aclosed submanifold of M with [ components, and dim M = d, then
Hy_1(Cu(N)) is free abelian of rank [ — 1 and Hy_;(Cu(N)) = H? (M) if
J —2 > k, where k is the maximum of the dimension of the components of

N.

@ Let N be a smooth homology k-sphere, & > 0, embedded in a smooth
Riemannian manifold M homeomorphic to S d If d > k + 3, then the cut
locus Cu(N) is homotopy equivalent to S¢—*~1,
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© Let N be a real analytic homology k-sphere embedded in a real analytic
homology d-sphere M. If d > k + 3, then the cut locus Cu(N) is a simplicial
complex of dimension at most (d — 1), having the homology of
(d — k — 1)-sphere with fundamental group isomorphic to that of M.
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Thank You for your attention!
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