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DMV-ÖMV Jahrestangung 2021

Sachchidanand Prasad

Indian Insitute of Science Education and Research Kolkata

1st October, 2021

Young Topologists and Geometers
1 / 95



Outline of the talk

1 Geometric aspects of the cut locus

2 Topological aspects of the cut locus

2 / 95



Geometric aspects of the cut locus

Geometric aspects of the cut locus

3 / 95



Geometric aspects of the cut locus

Morse-Bott Function

De�nition (Morse-Bott functions)
LetM be a Riemannian manifold. A smooth submanifoldN ⊂M is said to be
non-degenerate critical submanifold of f :M → R ifN ⊆ Cr(f) and for any
p ∈N , Hessp(f) is non-degenerate in the direction normal toN at p. The
function f is said to beMorse-Bott if the connected components of Cr(f) are
non-degenerate critical submanifolds.

The Hessp(f) is non-degenerate in the direction normal toN at pmeans for any
V ∈ (TpN)⊥ there existsW ∈ (TpN)⊥ such that Hessp(f)(V,W ) 6= 0.
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Geometric aspects of the cut locus

Cut locus of a submanifold

De�nition (Distance minimal geodesic)

A geodesic γ is called a distance minimal geodesic joiningN to p if there exists
q ∈N such that γ is a minimal geodesic joining q to p and l(γ) = d(p,N). We
will call such geodesics asN -geodesics.

De�nition (Cut locus)

LetM be a Riemannian manifold andN be any non-empty subset ofM . If
Cu(N) denotes the cut locus ofN , then we say that q ∈ Cu(N) if there exists an
N -geodesic joiningN to q such that any extension of it beyond q is not a distance
minimal geodesic.

10 / 95



Geometric aspects of the cut locus

Cut locus of a submanifold

De�nition (Distance minimal geodesic)

A geodesic γ is called a distance minimal geodesic joiningN to p if there exists
q ∈N such that γ is a minimal geodesic joining q to p and l(γ) = d(p,N). We
will call such geodesics asN -geodesics.

De�nition (Cut locus)

LetM be a Riemannian manifold andN be any non-empty subset ofM . If
Cu(N) denotes the cut locus ofN , then we say that q ∈ Cu(N) if there exists an
N -geodesic joiningN to q such that any extension of it beyond q is not a distance
minimal geodesic.

11 / 95



Geometric aspects of the cut locus

Cut locus of a submanifold

De�nition (Distance minimal geodesic)

A geodesic γ is called a distance minimal geodesic joiningN to p

if there exists
q ∈N such that γ is a minimal geodesic joining q to p and l(γ) = d(p,N). We
will call such geodesics asN -geodesics.

De�nition (Cut locus)

LetM be a Riemannian manifold andN be any non-empty subset ofM . If
Cu(N) denotes the cut locus ofN , then we say that q ∈ Cu(N) if there exists an
N -geodesic joiningN to q such that any extension of it beyond q is not a distance
minimal geodesic.

12 / 95



Geometric aspects of the cut locus

Cut locus of a submanifold

De�nition (Distance minimal geodesic)

A geodesic γ is called a distance minimal geodesic joiningN to p if there exists
q ∈N

such that γ is a minimal geodesic joining q to p and l(γ) = d(p,N). We
will call such geodesics asN -geodesics.

De�nition (Cut locus)

LetM be a Riemannian manifold andN be any non-empty subset ofM . If
Cu(N) denotes the cut locus ofN , then we say that q ∈ Cu(N) if there exists an
N -geodesic joiningN to q such that any extension of it beyond q is not a distance
minimal geodesic.

13 / 95



Geometric aspects of the cut locus

Cut locus of a submanifold

De�nition (Distance minimal geodesic)

A geodesic γ is called a distance minimal geodesic joiningN to p if there exists
q ∈N such that γ is a minimal geodesic joining q to p

and l(γ) = d(p,N). We
will call such geodesics asN -geodesics.

De�nition (Cut locus)

LetM be a Riemannian manifold andN be any non-empty subset ofM . If
Cu(N) denotes the cut locus ofN , then we say that q ∈ Cu(N) if there exists an
N -geodesic joiningN to q such that any extension of it beyond q is not a distance
minimal geodesic.

14 / 95



Geometric aspects of the cut locus

Cut locus of a submanifold

De�nition (Distance minimal geodesic)

A geodesic γ is called a distance minimal geodesic joiningN to p if there exists
q ∈N such that γ is a minimal geodesic joining q to p and l(γ) = d(p,N).

We
will call such geodesics asN -geodesics.

De�nition (Cut locus)

LetM be a Riemannian manifold andN be any non-empty subset ofM . If
Cu(N) denotes the cut locus ofN , then we say that q ∈ Cu(N) if there exists an
N -geodesic joiningN to q such that any extension of it beyond q is not a distance
minimal geodesic.

15 / 95



Geometric aspects of the cut locus

Cut locus of a submanifold

De�nition (Distance minimal geodesic)

A geodesic γ is called a distance minimal geodesic joiningN to p if there exists
q ∈N such that γ is a minimal geodesic joining q to p and l(γ) = d(p,N). We
will call such geodesics asN -geodesics.

De�nition (Cut locus)

LetM be a Riemannian manifold andN be any non-empty subset ofM . If
Cu(N) denotes the cut locus ofN , then we say that q ∈ Cu(N) if there exists an
N -geodesic joiningN to q such that any extension of it beyond q is not a distance
minimal geodesic.

16 / 95



Geometric aspects of the cut locus

Cut locus of a submanifold

De�nition (Distance minimal geodesic)

A geodesic γ is called a distance minimal geodesic joiningN to p if there exists
q ∈N such that γ is a minimal geodesic joining q to p and l(γ) = d(p,N). We
will call such geodesics asN -geodesics.

De�nition (Cut locus)

LetM be a Riemannian manifold andN be any non-empty subset ofM . If
Cu(N) denotes the cut locus ofN , then we say that q ∈ Cu(N) if there exists an
N -geodesic joiningN to q such that any extension of it beyond q is not a distance
minimal geodesic.

17 / 95



Geometric aspects of the cut locus

Cut locus of a submanifold

De�nition (Distance minimal geodesic)

A geodesic γ is called a distance minimal geodesic joiningN to p if there exists
q ∈N such that γ is a minimal geodesic joining q to p and l(γ) = d(p,N). We
will call such geodesics asN -geodesics.

De�nition (Cut locus)

LetM be a Riemannian manifold

andN be any non-empty subset ofM . If
Cu(N) denotes the cut locus ofN , then we say that q ∈ Cu(N) if there exists an
N -geodesic joiningN to q such that any extension of it beyond q is not a distance
minimal geodesic.

18 / 95



Geometric aspects of the cut locus

Cut locus of a submanifold

De�nition (Distance minimal geodesic)

A geodesic γ is called a distance minimal geodesic joiningN to p if there exists
q ∈N such that γ is a minimal geodesic joining q to p and l(γ) = d(p,N). We
will call such geodesics asN -geodesics.

De�nition (Cut locus)

LetM be a Riemannian manifold andN be any non-empty subset ofM .

If
Cu(N) denotes the cut locus ofN , then we say that q ∈ Cu(N) if there exists an
N -geodesic joiningN to q such that any extension of it beyond q is not a distance
minimal geodesic.

19 / 95



Geometric aspects of the cut locus

Cut locus of a submanifold

De�nition (Distance minimal geodesic)

A geodesic γ is called a distance minimal geodesic joiningN to p if there exists
q ∈N such that γ is a minimal geodesic joining q to p and l(γ) = d(p,N). We
will call such geodesics asN -geodesics.

De�nition (Cut locus)

LetM be a Riemannian manifold andN be any non-empty subset ofM . If
Cu(N) denotes the cut locus ofN ,

then we say that q ∈ Cu(N) if there exists an
N -geodesic joiningN to q such that any extension of it beyond q is not a distance
minimal geodesic.

20 / 95



Geometric aspects of the cut locus

Cut locus of a submanifold

De�nition (Distance minimal geodesic)

A geodesic γ is called a distance minimal geodesic joiningN to p if there exists
q ∈N such that γ is a minimal geodesic joining q to p and l(γ) = d(p,N). We
will call such geodesics asN -geodesics.

De�nition (Cut locus)

LetM be a Riemannian manifold andN be any non-empty subset ofM . If
Cu(N) denotes the cut locus ofN , then we say that q ∈ Cu(N) if there exists an
N -geodesic joiningN to q

such that any extension of it beyond q is not a distance
minimal geodesic.

21 / 95



Geometric aspects of the cut locus

Cut locus of a submanifold

De�nition (Distance minimal geodesic)

A geodesic γ is called a distance minimal geodesic joiningN to p if there exists
q ∈N such that γ is a minimal geodesic joining q to p and l(γ) = d(p,N). We
will call such geodesics asN -geodesics.

De�nition (Cut locus)

LetM be a Riemannian manifold andN be any non-empty subset ofM . If
Cu(N) denotes the cut locus ofN , then we say that q ∈ Cu(N) if there exists an
N -geodesic joiningN to q such that any extension of it beyond q is not a distance
minimal geodesic.

22 / 95



Geometric aspects of the cut locus

An Example
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Geometric aspects of the cut locus

Separating set of N

De�nition (Separating set)

LetN be a subset of a Riemannian manifoldM . The separating set, denoted by
Se(N), consists of all points q ∈M such that at least two distance minimal
geodesics fromN to q exist.

Theorem (Basu S., Prasad S., 2021)

For a complete Riemannian manifoldM and a compact submanifoldN ofM ,

Se(N) = Cu(N).
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Geometric aspects of the cut locus

An illuminating example

LetM =M(n,R), the set of n×nmatrices, andN =O(n,R), set of all
orthogonal n×nmatrices. We �x the standard Euclidean metric onM(n,R) by
identifying it withRn2 . This induces a distance function given by

d(A,B) :=
√

tr((A−B)T (A−B)), A,B ∈M(n,R)

Consider the distance squared function

f :M(n,R)→ R, A 7→ d2(A,O(n,R)).
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Geometric aspects of the cut locus

The function is f(A) = n+tr
(
ATA

)
−2tr

(√
ATA

)
.

It is di�erentiable atA if and only ifA is invertible.
It is a Morse-Bott function with critical submanifold asO(n,R).
If γ(t) is an integral curve of−∇f initialized atA, then

dγ

dt
=−2γ(t)+2

(
γ(t)T

)−1√
γ(t)Tγ(t). (1)

The solution of (1) given by

γ(t) =Ae−2t+(1−e−2t)A
(√

ATA
)−1

, γ(0) =A. (2)

Note that γ(t) is a �ow line which deformsGL(n,R) toO(n,R).
The separating set ofO(n,R) inM(n,R) is set of singular matrices and as it
is closed, the cut locus is the same.
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Geometric aspects of the cut locus

Results generalized from the example

Theorem

LetM be a connected, complete Riemannian manifold andN be an embedded
submanifold ofM . Suppose twoN -geodesics exists joiningN to q ∈M Then
d2(N, ·) :M → R has no directional derivative at q for vectors in direction of those
twoN -geodesic.

Theorem
LetM be a complete Riemannian manifold andN be compact submanifold ofM .
ThenN is a deformation retract ofM −Cu(N).

Theorem
The cut locus Cu(N) is a strong deformation retract ofM −N . In particular,
(M,Cu(N)) is a good pair and the number of path components of Cu(N) equals
that ofM −N .
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Geometric aspects of the cut locus

Outline of the proof of the deformation

De�ne

s : S(ν)→ [0,∞], s(v) := sup{t ∈ [0,∞) |γv|[0,t] is anN -geodesic},

where S(ν) is the unit normal bundle ofN and [0,∞] is the one-point
compacti�cation of [0,∞). The map s is continuous and is �nite ifM is compact.
Note that the cut locus is

Cu(N) = expν {s(v)v : v ∈ S(ν)} ,

where expν : ν→M, expν(p,v) := expp(v). De�ne an open neighborhood
U0(N) of the zero section in the normal bundle as

U0(N) := {av : 0≤ a < s(v), v ∈ S(ν)} .

Note that expν is a di�eomorphism onU0(N) and set
U(N) = expν(U0(N)) =M −Cu(N).
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Geometric aspects of the cut locus

expν
∼=

M

Cu(N)

U0(N)

p

The spaceU0(N) deforms to the zero section on the normal bundle.

H : U0(N)× [0,1]→ U0(N),((p,av), t) 7→ (p,tav).
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Geometric aspects of the cut locus

Now consider the following diagram:

U0(N)× [0,1] H // U0(N)
expν

��

U × [0,1]

exp−1
ν

OO

F // U ∼=M −Cu(N)

The map F can be de�ned by taking the compositions

F = expν ◦H ◦ exp−1
ν .
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Topological aspects of the cut locus

Topological aspects of the cut locus
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Topological aspects of the cut locus

Thom space

De�nition (Thom space)
Let π : E→B be a real vector bundle over a paracompact spaceB with a metric.
LetD(E) be the unit disk bundle and S(E) be the unit sphere bundle. Then the
Thom space ofE, denote by Th(E) is the quotient Th(E) :=D(E)/S(E).

Remark
IfB is compact, then Th(E) is the one point compacti�cation ofE.
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Topological aspects of the cut locus

De�nition (Rescaled exponential)
The rescaled exponentialmap is de�ned to be

ẽxp :D(ν)→M, (p,v) 7→
{

expp(s(v̂)v), if v = ‖v‖v̂
p, if v = 0.

Remark
Since s is continuous, the rescaled exponential is also continuous and is surjective.
Also note that ẽxp(S(ν)) = Cu(N).
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Topological aspects of the cut locus

TheMain Theorem

Theorem (Basu S., Prasad S., 2021)
LetN be an embedded submanifold inside a closed, connected Riemannian
manifoldM . If ν denotes the normal bundle ofN inM , then there is a
homeomorphism

ẽxp :D(ν)/S(ν)
∼=−→M/Cu(N).
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Topological aspects of the cut locus

Applications

1 The inclusion map i : Cu(N) ↪→M induces a long exact sequence in
homology

· · ·→Hj(Cu(N)) i∗−→Hj(M)→Hj(M,Cu(N)) ∂−→Hj−1(Cu(N))→·· · ,

so

· · · →Hj(Cu(N)) i∗−→Hj(M) q−→ H̃j(Th(ν)) ∂−→Hj−1(Cu(N))→ ·· ·

2 IfN is a closed submanifold ofM with l components, and dimM = d, then
Hd−1(Cu(N)) is free abelian of rank l−1 andHd−j(Cu(N))≡Hj(M) if
j−2≥ k, where k is the maximum of the dimension of the components of
N .

3 LetN be a smooth homology k-sphere, k > 0, embedded in a smooth
Riemannian manifoldM homeomorphic to Sd. If d≥ k+3, then the cut
locus Cu(N) is homotopy equivalent to Sd−k−1.
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Hd−1(Cu(N)) is free abelian of rank l−1 andHd−j(Cu(N))≡Hj(M) if
j−2≥ k, where k is the maximum of the dimension of the components of
N .

3 LetN be a smooth homology k-sphere, k > 0, embedded in a smooth
Riemannian manifoldM homeomorphic to Sd. If d≥ k+3, then the cut
locus Cu(N) is homotopy equivalent to Sd−k−1.
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4 LetN be a real analytic homology k-sphere embedded in a real analytic
homology d-sphereM . If d≥ k+3, then the cut locusCu(N) is a simplicial
complex of dimension at most (d−1), having the homology of
(d−k−1)-sphere with fundamental group isomorphic to that ofM .
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Thank You for your attention!
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