Morse-Bott Flows and Cut Locus of Submanifolds

(based on joint work with Dr. Somnath Basu)

Sachchidanand Prasad

Indian Insitute of Science Education and Research Kolkata
7th June, 2022

The 39th Annual Workshop in Geometric Topology

Outline of the talk

(1) Geometric aspects of the cut locus
(2) Topological aspects of the cut locus

Geometric aspects of the cut locus

Morse-Bott Function

Morse-Bott Function

Definition (Morse-Bott functions)

Morse-Bott Function

Definition (Morse-Bott functions)

Let M be a Riemannian manifold. A smooth submanifold $N \subset M$ is said to be non-degenerate critical submanifold of $f: M \rightarrow \mathbb{R}$ if $N \subseteq \operatorname{Cr}(f)$

Morse-Bott Function

Definition (Morse-Bott functions)

Let M be a Riemannian manifold. A smooth submanifold $N \subset M$ is said to be non-degenerate critical submanifold of $f: M \rightarrow \mathbb{R}$ if $N \subseteq \operatorname{Cr}(f)$ and for any $p \in N, \operatorname{Hess}_{p}(f)$ is non-degenerate in the direction normal to N at p.

Morse-Bott Function

Definition (Morse-Bott functions)

Let M be a Riemannian manifold. A smooth submanifold $N \subset M$ is said to be non-degenerate critical submanifold of $f: M \rightarrow \mathbb{R}$ if $N \subseteq \operatorname{Cr}(f)$ and for any $p \in N, \operatorname{Hess}_{p}(f)$ is non-degenerate in the direction normal to N at p.

The $\operatorname{Hess}_{p}(f)$ is non-degenerate in the direction normal to N at p means for any $V \in\left(T_{p} N\right)^{\perp}$ there exists $W \in\left(T_{p} N\right)^{\perp}$ such that $\operatorname{Hess}_{p}(f)(V, W) \neq 0$.

Morse-Bott Function

Definition (Morse-Bott functions)

Let M be a Riemannian manifold. A smooth submanifold $N \subset M$ is said to be non-degenerate critical submanifold of $f: M \rightarrow \mathbb{R}$ if $N \subseteq \operatorname{Cr}(f)$ and for any $p \in N, \operatorname{Hess}_{p}(f)$ is non-degenerate in the direction normal to N at p. The function f is said to be Morse-Bott if the connected components of $\operatorname{Cr}(f)$ are non-degenerate critical submanifolds.

The $\operatorname{Hess}_{p}(f)$ is non-degenerate in the direction normal to N at p means for any $V \in\left(T_{p} N\right)^{\perp}$ there exists $W \in\left(T_{p} N\right)^{\perp}$ such that $\operatorname{Hess}_{p}(f)(V, W) \neq 0$.

Cut locus of a submanifold

Cut locus of a submanifold

Definition (Distance minimal geodesic)

Cut locus of a submanifold

Definition (Distance minimal geodesic)

A geodesic γ is called a distance minimal geodesic joining N to p

Cut locus of a submanifold

Definition (Distance minimal geodesic)

A geodesic γ is called a distance minimal geodesic joining N to p if there exists $q \in N$

Cut locus of a submanifold

Definition (Distance minimal geodesic)

A geodesic γ is called a distance minimal geodesic joining N to p if there exists $q \in N$ such that γ is a minimal geodesic joining q to p

Cut locus of a submanifold

Definition (Distance minimal geodesic)

A geodesic γ is called a distance minimal geodesic joining N to p if there exists $q \in N$ such that γ is a minimal geodesic joining q to p and $l(\gamma)=d(p, N)$.

Cut locus of a submanifold

Definition (Distance minimal geodesic)

A geodesic γ is called a distance minimal geodesic joining N to p if there exists $q \in N$ such that γ is a minimal geodesic joining q to p and $l(\gamma)=d(p, N)$. We will call such geodesics as N-geodesics.

Cut locus of a submanifold

Definition (Distance minimal geodesic)

A geodesic γ is called a distance minimal geodesic joining N to p if there exists $q \in N$ such that γ is a minimal geodesic joining q to p and $l(\gamma)=d(p, N)$. We will call such geodesics as N-geodesics.

Definition (Cut locus of a submanifold)

Cut locus of a submanifold

Definition (Distance minimal geodesic)

A geodesic γ is called a distance minimal geodesic joining N to p if there exists $q \in N$ such that γ is a minimal geodesic joining q to p and $l(\gamma)=d(p, N)$. We will call such geodesics as N-geodesics.

Definition (Cut locus of a submanifold)

Let M be a Riemannian manifold

Cut locus of a submanifold

Definition (Distance minimal geodesic)

A geodesic γ is called a distance minimal geodesic joining N to p if there exists $q \in N$ such that γ is a minimal geodesic joining q to p and $l(\gamma)=d(p, N)$. We will call such geodesics as N-geodesics.

Definition (Cut locus of a submanifold)

Let M be a Riemannian manifold and N be any non-empty subset of M.

Cut locus of a submanifold

Definition (Distance minimal geodesic)

A geodesic γ is called a distance minimal geodesic joining N to p if there exists $q \in N$ such that γ is a minimal geodesic joining q to p and $l(\gamma)=d(p, N)$. We will call such geodesics as N-geodesics.

Definition (Cut locus of a submanifold)

Let M be a Riemannian manifold and N be any non-empty subset of M. If $\mathrm{Cu}(N)$ denotes the cut locus of N,

Cut locus of a submanifold

Definition (Distance minimal geodesic)

A geodesic γ is called a distance minimal geodesic joining N to p if there exists $q \in N$ such that γ is a minimal geodesic joining q to p and $l(\gamma)=d(p, N)$. We will call such geodesics as N-geodesics.

Definition (Cut locus of a submanifold)

Let M be a Riemannian manifold and N be any non-empty subset of M. If $\mathrm{Cu}(N)$ denotes the cut locus of N, then we say that $q \in \mathrm{Cu}(N)$ if there exists an N-geodesic joining N to q

Cut locus of a submanifold

Definition (Distance minimal geodesic)

A geodesic γ is called a distance minimal geodesic joining N to p if there exists $q \in N$ such that γ is a minimal geodesic joining q to p and $l(\gamma)=d(p, N)$. We will call such geodesics as N-geodesics.

Definition (Cut locus of a submanifold)

Let M be a Riemannian manifold and N be any non-empty subset of M. If $\mathrm{Cu}(N)$ denotes the cut locus of N, then we say that $q \in \mathrm{Cu}(N)$ if there exists an N-geodesic joining N to q such that any extension of it beyond q is not a distance minimal geodesic.

An Example

Separating set of N

Separating set of N

Definition (Separating set)

Separating set of N

Definition (Separating set)

Let N be a subset of a Riemannian manifold M.

Separating set of N

Definition (Separating set)

Let N be a subset of a Riemannian manifold M. The separating set, denoted by $\mathrm{Se}(N)$,

Separating set of N

Definition (Separating set)

Let N be a subset of a Riemannian manifold M. The separating set, denoted by $\operatorname{Se}(N)$, consists of all points $q \in M$

Separating set of N

Definition (Separating set)

Let N be a subset of a Riemannian manifold M. The separating set, denoted by $\operatorname{Se}(N)$, consists of all points $q \in M$ such that at least two distance minimal geodesics from N to q exist.

Separating set of N

Definition (Separating set)

Let N be a subset of a Riemannian manifold M. The separating set, denoted by $\operatorname{Se}(N)$, consists of all points $q \in M$ such that at least two distance minimal geodesics from N to q exist.

Theorem (Basu S., Prasad S., 202I)
For a complete Riemannian manifold M and a compact submanifold N of M,

$$
\overline{\operatorname{Se}(N)}=\operatorname{Cu}(N)
$$

An illuminating example

An illuminating example

Let $M=M(n, \mathbb{R})$, the set of $n \times n$ matrices, and $N=O(n, \mathbb{R})$, set of all orthogonal $n \times n$ matrices.

An illuminating example

Let $M=M(n, \mathbb{R})$, the set of $n \times n$ matrices, and $N=O(n, \mathbb{R})$, set of all orthogonal $n \times n$ matrices. We fix the standard Euclidean metric on $M(n, \mathbb{R})$ by identifying it with $\mathbb{R}^{n^{2}}$.

An illuminating example

Let $M=M(n, \mathbb{R})$, the set of $n \times n$ matrices, and $N=O(n, \mathbb{R})$, set of all orthogonal $n \times n$ matrices. We fix the standard Euclidean metric on $M(n, \mathbb{R})$ by identifying it with $\mathbb{R}^{n^{2}}$. This induces a distance function given by

$$
d(A, B):=\sqrt{\operatorname{tr}\left((A-B)^{T}(A-B)\right)}, \quad A, B \in M(n, \mathbb{R})
$$

An illuminating example

Let $M=M(n, \mathbb{R})$, the set of $n \times n$ matrices, and $N=O(n, \mathbb{R})$, set of all orthogonal $n \times n$ matrices. We fix the standard Euclidean metric on $M(n, \mathbb{R})$ by identifying it with $\mathbb{R}^{n^{2}}$. This induces a distance function given by

$$
d(A, B):=\sqrt{\operatorname{tr}\left((A-B)^{T}(A-B)\right)}, \quad A, B \in M(n, \mathbb{R})
$$

Consider the distance squared function

$$
f: M(n, \mathbb{R}) \rightarrow \mathbb{R}, \quad A \mapsto d^{2}(A, O(n, \mathbb{R}))
$$

- The function is $f(A)=n+\operatorname{tr}\left(A^{T} A\right)-2 \operatorname{tr}\left(\sqrt{A^{T} A}\right)$.
- It is differentiable at A if and only if A is invertible.
- It is a Morse-Bott function with critical submanifold as $O(n, \mathbb{R})$.
- If $\gamma(t)$ is an integral curve of $-\nabla f$ initialized at A, then

$$
\begin{equation*}
\frac{d \gamma}{d t}=-2 \gamma(t)+2\left(\gamma(t)^{T}\right)^{-1} \sqrt{\gamma(t)^{T} \gamma(t)} . \tag{I}
\end{equation*}
$$

- The solution of (r) given by

$$
\begin{equation*}
\gamma(t)=A e^{-2 t}+\left(1-e^{-2 t}\right) A\left(\sqrt{A^{T} A}\right)^{-1}, \gamma(0)=A . \tag{2}
\end{equation*}
$$

- The flow line $\gamma(t)$ deforms $G L(n, \mathbb{R})$ to $O(n, \mathbb{R})$.
- The separating set of $O(n, \mathbb{R})$ in $M(n, \mathbb{R})$ is set of singular matrices and as it is closed, the cut locus is the same.
- The function is $f(A)=n+\operatorname{tr}\left(A^{T} A\right)-2 \operatorname{tr}\left(\sqrt{A^{T} A}\right)$.
- It is differentiable at A if and only if A is invertible.
- It is a Morse-Bott function with critical submanifold as $O(n, \mathbb{R})$.
- If $\gamma(t)$ is an integral curve of $-\nabla f$ initialized at A, then

$$
\begin{equation*}
\frac{d \gamma}{d t}=-2 \gamma(t)+2\left(\gamma(t)^{T}\right)^{-1} \sqrt{\gamma(t)^{T} \gamma(t)} \tag{I}
\end{equation*}
$$

- The solution of (r) given by

$$
\begin{equation*}
\gamma(t)=A e^{-2 t}+\left(1-e^{-2 t}\right) A\left(\sqrt{A^{T} A}\right)^{-1}, \gamma(0)=A \tag{2}
\end{equation*}
$$

- The flow line $\gamma(t)$ deforms $G L(n, \mathbb{R})$ to $O(n, \mathbb{R})$.
- The separating set of $O(n, \mathbb{R})$ in $M(n, \mathbb{R})$ is set of singular matrices and as it is closed, the cut locus is the same.
- The function is $f(A)=n+\operatorname{tr}\left(A^{T} A\right)-2 \operatorname{tr}\left(\sqrt{A^{T} A}\right)$.
- It is differentiable at A if and only if A is invertible.
- It is a Morse-Bott function with critical submanifold as $O(n, \mathbb{R})$.
- If $\gamma(t)$ is an integral curve of $-\nabla f$ initialized at A, then

- The solution of (г) given by

$$
\begin{equation*}
\gamma(t)=A e^{-2 t}+\left(1-e^{-2 t}\right) A\left(\sqrt{A^{T} A}\right)^{-1}, \gamma(0)=A . \tag{2}
\end{equation*}
$$

- The flow line $\gamma(t)$ deforms $G L(n, \mathbb{R})$ to $O(n, \mathbb{R})$.
- The separating set of $O(n, \mathbb{R})$ in $M(n, \mathbb{R})$ is set of singular matrices and as it is closed, the cut locus is the same.
- The function is $f(A)=n+\operatorname{tr}\left(A^{T} A\right)-2 \operatorname{tr}\left(\sqrt{A^{T} A}\right)$.
- It is differentiable at A if and only if A is invertible.
- It is a Morse-Bott function with critical submanifold as $O(n, \mathbb{R})$.
- If $\gamma(t)$ is an integral curve of $-\nabla f$ initialized at A, then

$$
\begin{equation*}
\frac{d \gamma}{d t}=-2 \gamma(t)+2\left(\gamma(t)^{T}\right)^{-1} \sqrt{\gamma(t)^{T} \gamma(t)} \tag{I}
\end{equation*}
$$

- The flow line $\gamma(t)$ deforms $G L(n, \mathbb{R})$ to $O(n, \mathbb{R})$.
- The senarating set of $O(n, \mathbb{R})$ in $M(n, \mathbb{R})$ is set of singular matrices and as it is closed, the cut locus is the same.
- The function is $f(A)=n+\operatorname{tr}\left(A^{T} A\right)-2 \operatorname{tr}\left(\sqrt{A^{T} A}\right)$.
- It is differentiable at A if and only if A is invertible.
- It is a Morse-Bott function with critical submanifold as $O(n, \mathbb{R})$.
- If $\gamma(t)$ is an integral curve of $-\nabla f$ initialized at A, then

$$
\begin{equation*}
\frac{d \gamma}{d t}=-2 \gamma(t)+2\left(\gamma(t)^{T}\right)^{-1} \sqrt{\gamma(t)^{T} \gamma(t)} \tag{I}
\end{equation*}
$$

- The solution of (I) given by

$$
\begin{equation*}
\gamma(t)=A e^{-2 t}+\left(1-e^{-2 t}\right) A\left(\sqrt{A^{T} A}\right)^{-1}, \gamma(0)=A \tag{2}
\end{equation*}
$$

- The flow line $\gamma(t)$ deforms $G L(n, \mathbb{R})$ to $O(n, \mathbb{R})$.
- The function is $f(A)=n+\operatorname{tr}\left(A^{T} A\right)-2 \operatorname{tr}\left(\sqrt{A^{T} A}\right)$.
- It is differentiable at A if and only if A is invertible.
- It is a Morse-Bott function with critical submanifold as $O(n, \mathbb{R})$.
- If $\gamma(t)$ is an integral curve of $-\nabla f$ initialized at A, then

$$
\begin{equation*}
\frac{d \gamma}{d t}=-2 \gamma(t)+2\left(\gamma(t)^{T}\right)^{-1} \sqrt{\gamma(t)^{T} \gamma(t)} \tag{I}
\end{equation*}
$$

- The solution of (I) given by

$$
\begin{equation*}
\gamma(t)=A e^{-2 t}+\left(1-e^{-2 t}\right) A\left(\sqrt{A^{T} A}\right)^{-1}, \gamma(0)=A \tag{2}
\end{equation*}
$$

- The flow line $\gamma(t)$ deforms $G L(n, \mathbb{R})$ to $O(n, \mathbb{R})$. is closed, the cut locus is the same.
- The function is $f(A)=n+\operatorname{tr}\left(A^{T} A\right)-2 \operatorname{tr}\left(\sqrt{A^{T} A}\right)$.
- It is differentiable at A if and only if A is invertible.
- It is a Morse-Bott function with critical submanifold as $O(n, \mathbb{R})$.
- If $\gamma(t)$ is an integral curve of $-\nabla f$ initialized at A, then

$$
\begin{equation*}
\frac{d \gamma}{d t}=-2 \gamma(t)+2\left(\gamma(t)^{T}\right)^{-1} \sqrt{\gamma(t)^{T} \gamma(t)} . \tag{I}
\end{equation*}
$$

- The solution of (I) given by

$$
\begin{equation*}
\gamma(t)=A e^{-2 t}+\left(1-e^{-2 t}\right) A\left(\sqrt{A^{T} A}\right)^{-1}, \gamma(0)=A \tag{2}
\end{equation*}
$$

- The flow line $\gamma(t)$ deforms $G L(n, \mathbb{R})$ to $O(n, \mathbb{R})$.
- The separating set of $O(n, \mathbb{R})$ in $M(n, \mathbb{R})$ is set of singular matrices and as it is closed, the cut locus is the same.

Results generalized from the example

Theorem (Basu S., Prasad S., 202I)

Results generalized from the example

Theorem (Basu S., Prasad S., 202I)
Let M be a connected,

Results generalized from the example

Theorem (Basu S., Prasad S., 202I)
Let M be a connected, complete Riemannian manifold

Results generalized from the example

Theorem (Basu S., Prasad S., 202I)
Let M be a connected, complete Riemannian manifold and N be an embedded submanifold of M.

Results generalized from the example

Theorem (Basu S., Prasad S., 202I)
Let M be a connected, complete Riemannian manifold and N be an embedded submanifold of M. Suppose two N-geodesics exists joining N to $q \in M$

Results generalized from the example

Theorem (Basu S., Prasad S., 202I)
Let M be a connected, complete Riemannian manifold and N be an embedded submanifold of M. Suppose two N-geodesics exists joining N to $q \in M$ Then $d^{2}(N, \cdot): M \rightarrow \mathbb{R}$ has no directional derivative at q

Results generalized from the example

Theorem (Basu S., Prasad S., 202I)
Let M be a connected, complete Riemannian manifold and N be an embedded submanifold of M. Suppose two N-geodesics exists joining N to $q \in M$ Then $d^{2}(N, \cdot): M \rightarrow \mathbb{R}$ bas no directional derivative at q for vectors in direction of those two N-geodesic.

Results generalized from the example

Theorem (Basu S., Prasad S., 202I)
Let M be a connected, complete Riemannian manifold and N be an embedded submanifold of M. Suppose two N-geodesics exists joining N to $q \in M$ Then $d^{2}(N, \cdot): M \rightarrow \mathbb{R}$ bas no directional derivative at q for vectors in direction of those two N-geodesic.

Theorem (Basu S., Prasad S., 202I)

Let M be a complete Riemannian manifold

Results generalized from the example

Theorem (Basu S., Prasad S., 202I)
Let M be a connected, complete Riemannian manifold and N be an embedded submanifold of M. Suppose two N-geodesics exists joining N to $q \in M$ Then $d^{2}(N, \cdot): M \rightarrow \mathbb{R}$ bas no directional derivative at q for vectors in direction of those two N-geodesic.

Theorem (Basu S., Prasad S., 202I)

Let M be a complete Riemannian manifold and N be compact submanifold of M.

Results generalized from the example

Theorem (Basu S., Prasad S., 202I)
Let M be a connected, complete Riemannian manifold and N be an embedded submanifold of M. Suppose two N-geodesics exists joining N to $q \in M$ Then $d^{2}(N, \cdot): M \rightarrow \mathbb{R}$ bas no directional derivative at q for vectors in direction of those two N-geodesic.

Theorem (Basu S., Prasad S., 202I)

Let M be a complete Riemannian manifold and N be compact submanifold of M. Then N is a deformation retract of $M-\mathrm{Cu}(N)$.

Results generalized from the example

Theorem (Basu S., Prasad S., 202I)
Let M be a connected, complete Riemannian manifold and N be an embedded submanifold of M. Suppose two N-geodesics exists joining N to $q \in M$ Then $d^{2}(N, \cdot): M \rightarrow \mathbb{R}$ bas no directional derivative at q for vectors in direction of those two N-geodesic.

Theorem (Basu S., Prasad S., 202I)

Let M be a complete Riemannian manifold and N be compact submanifold of M. Then N is a deformation retract of $M-\mathrm{Cu}(N)$.

Theorem (Basu S., Prasad S., 202I)

The cut locus $\mathrm{Cu}(N)$ is a strong deformation retract of $M-N$.

Results generalized from the example

Theorem (Basu S., Prasad S., 202I)
Let M be a connected, complete Riemannian manifold and N be an embedded submanifold of M. Suppose two N-geodesics exists joining N to $q \in M$ Then $d^{2}(N, \cdot): M \rightarrow \mathbb{R}$ bas no directional derivative at q for vectors in direction of those two N-geodesic.

Theorem (Basu S., Prasad S., 202I)

Let M be a complete Riemannian manifold and N be compact submanifold of M. Then N is a deformation retract of $M-\mathrm{Cu}(N)$.

Theorem (Basu S., Prasad S., 202I)

The cut locus $\mathrm{Cu}(N)$ is a strong deformation retract of $M-N$. In particular, $(M, \mathrm{Cu}(N))$ is a good pair

Results generalized from the example

Theorem (Basu S., Prasad S., 202I)

Let M be a connected, complete Riemannian manifold and N be an embedded submanifold of M. Suppose two N-geodesics exists joining N to $q \in M$ Then $d^{2}(N, \cdot): M \rightarrow \mathbb{R}$ bas no directional derivative at q for vectors in direction of those two N-geodesic.

Theorem (Basu S., Prasad S., 202I)

Let M be a complete Riemannian manifold and N be compact submanifold of M. Then N is a deformation retract of $M-\mathrm{Cu}(N)$.

Theorem (Basu S., Prasad S., 202I)

The cut locus $\mathrm{Cu}(N)$ is a strong deformation retract of $M-N$. In particular, $(M, \mathrm{Cu}(N))$ is a good pair and the number of path components of $\mathrm{Cu}(N)$ equals that of $M-N$.

Outline of the proof of the deformation

Outline of the proof of the deformation

Define

$$
\mathbf{s}: S(\nu) \rightarrow[0, \infty], \mathbf{s}(v):=\sup \left\{t \in[0, \infty)\left|\gamma_{v}\right|_{[0, t]} \text { is an } N \text {-geodesic }\right\},
$$

where $S(\nu)$ is the unit normal bundle of N and $[0, \infty]$ is the one-point compactification of $[0, \infty)$.

Outline of the proof of the deformation

Define

$$
\mathbf{s}: S(\nu) \rightarrow[0, \infty], \mathbf{s}(v):=\sup \left\{t \in[0, \infty)\left|\gamma_{v}\right|_{[0, t]} \text { is an } N \text {-geodesic }\right\},
$$

where $S(\nu)$ is the unit normal bundle of N and $[0, \infty]$ is the one-point compactification of $[0, \infty)$. The map s is continuous

Outline of the proof of the deformation

Define

$$
\mathbf{s}: S(\nu) \rightarrow[0, \infty], \mathbf{s}(v):=\sup \left\{t \in[0, \infty)\left|\gamma_{v}\right|_{[0, t]} \text { is an } N \text {-geodesic }\right\},
$$

where $S(\nu)$ is the unit normal bundle of N and $[0, \infty]$ is the one-point compactification of $[0, \infty)$. The map s is continuous and is finite if M is compact.

Outline of the proof of the deformation

Define

$$
\mathbf{s}: S(\nu) \rightarrow[0, \infty], \mathbf{s}(v):=\sup \left\{t \in[0, \infty)\left|\gamma_{v}\right|_{[0, t]} \text { is an } N \text {-geodesic }\right\},
$$

where $S(\nu)$ is the unit normal bundle of N and $[0, \infty]$ is the one-point compactification of $[0, \infty)$. The map s is continuous and is finite if M is compact. Note that the cut locus is

$$
\mathrm{Cu}(N)=\exp _{\nu}\{\mathbf{s}(v) v: v \in S(\nu)\},
$$

Outline of the proof of the deformation

Define

$$
\mathbf{s}: S(\nu) \rightarrow[0, \infty], \mathbf{s}(v):=\sup \left\{t \in[0, \infty)\left|\gamma_{v}\right|_{[0, t]} \text { is an } N \text {-geodesic }\right\}
$$

where $S(\nu)$ is the unit normal bundle of N and $[0, \infty]$ is the one-point compactification of $[0, \infty)$. The map s is continuous and is finite if M is compact. Note that the cut locus is

$$
\mathrm{Cu}(N)=\exp _{\nu}\{\mathbf{s}(v) v: v \in S(\nu)\},
$$

where $\exp _{\nu}: \nu \rightarrow M, \exp _{\nu}(p, v):=\exp _{p}(v)$.

Outline of the proof of the deformation

Define

$$
\mathbf{s}: S(\nu) \rightarrow[0, \infty], \mathbf{s}(v):=\sup \left\{t \in[0, \infty)\left|\gamma_{v}\right|_{[0, t]} \text { is an } N \text {-geodesic }\right\}
$$

where $S(\nu)$ is the unit normal bundle of N and $[0, \infty]$ is the one-point compactification of $[0, \infty)$. The map s is continuous and is finite if M is compact. Note that the cut locus is

$$
\mathrm{Cu}(N)=\exp _{\nu}\{\mathbf{s}(v) v: v \in S(\nu)\},
$$

where $\exp _{\nu}: \nu \rightarrow M, \exp _{\nu}(p, v):=\exp _{p}(v)$. Define an open neighborhood $U_{0}(N)$ of the zero section in the normal bundle as

$$
U_{0}(N):=\{a v: 0 \leq a<\mathbf{s}(v), v \in S(\nu)\} .
$$

Outline of the proof of the deformation

Define

$$
\mathbf{s}: S(\nu) \rightarrow[0, \infty], \mathbf{s}(v):=\sup \left\{t \in[0, \infty)\left|\gamma_{v}\right|_{[0, t]} \text { is an } N \text {-geodesic }\right\}
$$

where $S(\nu)$ is the unit normal bundle of N and $[0, \infty]$ is the one-point compactification of $[0, \infty)$. The map s is continuous and is finite if M is compact. Note that the cut locus is

$$
\mathrm{Cu}(N)=\exp _{\nu}\{\mathbf{s}(v) v: v \in S(\nu)\},
$$

where $\exp _{\nu}: \nu \rightarrow M, \exp _{\nu}(p, v):=\exp _{p}(v)$. Define an open neighborhood $U_{0}(N)$ of the zero section in the normal bundle as

$$
U_{0}(N):=\{a v: 0 \leq a<\mathbf{s}(v), v \in S(\nu)\} .
$$

Note that $\exp _{\nu}$ is a diffeomorphism on $U_{0}(N)$ and set $U(N)=\exp _{\nu}\left(U_{0}(N)\right)=M-\operatorname{Cu}(N)$.

The space $U_{0}(N)$ deforms to the zero section on the normal bundle.

The space $U_{0}(N)$ deforms to the zero section on the normal bundle.

$$
H: U_{0}(N) \times[0,1] \rightarrow U_{0}(N),((p, a v), t) \mapsto(p, t a v) .
$$

Now consider the following diagram:

$$
\begin{gathered}
U_{0}(N) \times[0,1] \xrightarrow{H} U_{0}(N) \\
\exp _{\nu}^{-1} \uparrow \\
U \times[0,1] \xrightarrow{\downarrow} U \cong M-\operatorname{Cup}(N)
\end{gathered}
$$

Now consider the following diagram:

$$
\begin{gathered}
U_{0}(N) \times[0,1] \xrightarrow{H} U_{0}(N) \\
\exp _{\nu}^{-1} \uparrow \\
U \times[0,1] \xrightarrow{\text { exp }} \xrightarrow{\text { exp }} U \cong M-\mathrm{Cu}(N)
\end{gathered}
$$

The map F can be defined by taking the compositions

$$
F=\exp _{\nu} \circ H \circ \exp _{\nu}^{-1} .
$$

Topological aspects of the cut locus

Thom space

Thom space

Definition (Thom space)

Let $\pi: E \rightarrow B$ be a real vector bundle over a paracompact space B with a metric. Let $D(E)$ be the unit disk bundle and $S(E)$ be the unit sphere bundle.

Thom space

Definition (Thom space)

Let $\pi: E \rightarrow B$ be a real vector bundle over a paracompact space B with a metric. Let $D(E)$ be the unit disk bundle and $S(E)$ be the unit sphere bundle. Then the Thom space of E, denote by $\operatorname{Th}(E)$ is the quotient $\operatorname{Th}(E):=D(E) / S(E)$.

Thom space

Definition (Thom space)

Let $\pi: E \rightarrow B$ be a real vector bundle over a paracompact space B with a metric. Let $D(E)$ be the unit disk bundle and $S(E)$ be the unit sphere bundle. Then the Thom space of E, denote by $\operatorname{Th}(E)$ is the quotient $\operatorname{Th}(E):=D(E) / S(E)$.

Remark

If B is compact, then $\operatorname{Th}(E)$ is the one point compactification of E.

Definition (Rescaled exponential)

The rescaled exponential map is defined to be

$$
\widetilde{\exp }: D(\nu) \rightarrow M,(p, v) \mapsto \begin{cases}\exp _{p}(\mathbf{s}(\hat{v}) v), & \text { if } v=\|v\| \hat{v} \\ p, & \text { if } v=0 .\end{cases}
$$

Definition (Rescaled exponential)

The rescaled exponential map is defined to be

$$
\widetilde{\exp }: D(\nu) \rightarrow M,(p, v) \mapsto \begin{cases}\exp _{p}(\mathbf{s}(\hat{v}) v), & \text { if } v=\|v\| \hat{v} \\ p, & \text { if } v=0 .\end{cases}
$$

Remark

Since \mathbf{s} is continuous, the rescaled exponential is also continuous and is surjective.

Definition (Rescaled exponential)

The rescaled exponential map is defined to be

$$
\widetilde{\exp }: D(\nu) \rightarrow M,(p, v) \mapsto \begin{cases}\exp _{p}(\mathbf{s}(\hat{v}) v), & \text { if } v=\|v\| \hat{v} \\ p, & \text { if } v=0 .\end{cases}
$$

Remark

Since \mathbf{s} is continuous, the rescaled exponential is also continuous and is surjective. Also note that $\widetilde{\exp }(S(\nu))=\mathrm{Cu}(N)$.

The Main Theorem

Theorem (Basu S., Prasad S., 202I)

Let N be an embedded submanifold inside a closed, connected Riemannian manifold M. If ν denotes the normal bundle of N in M, then there is a homeomorphism

$$
\widetilde{\exp }: D(\nu) / S(\nu) \xrightarrow{\cong} M / \mathrm{Cu}(N) .
$$

Applications

Applications

- The inclusion map $i: \mathrm{Cu}(N) \hookrightarrow M$ induces a long exact sequence in homology

Applications

- The inclusion map $i: \mathrm{Cu}(N) \hookrightarrow M$ induces a long exact sequence in homology
$\cdots \rightarrow H_{j}(\mathrm{Cu}(N)) \xrightarrow{i_{*}} H_{j}(M) \rightarrow H_{j}(M, \mathrm{Cu}(N)) \xrightarrow{\partial} H_{j-1}(\mathrm{Cu}(N)) \rightarrow \cdots$,

Applications

- The inclusion map $i: \mathrm{Cu}(N) \hookrightarrow M$ induces a long exact sequence in homology
$\cdots \rightarrow H_{j}(\mathrm{Cu}(N)) \xrightarrow{i_{*}} H_{j}(M) \rightarrow H_{j}(M, \mathrm{Cu}(N)) \xrightarrow{\partial} H_{j-1}(\mathrm{Cu}(N)) \rightarrow \cdots$,
so
$\cdots \rightarrow H_{j}(\mathrm{Cu}(N)) \xrightarrow{i_{*}} H_{j}(M) \xrightarrow{q} \tilde{H}_{j}(\mathrm{Th}(\nu)) \xrightarrow{\partial} H_{j-1}(\mathrm{Cu}(N)) \rightarrow \cdots$

Applications

(- The inclusion map $i: \mathrm{Cu}(N) \hookrightarrow M$ induces a long exact sequence in homology
$\cdots \rightarrow H_{j}(\mathrm{Cu}(N)) \xrightarrow{i_{*}} H_{j}(M) \rightarrow H_{j}(M, \mathrm{Cu}(N)) \xrightarrow{\partial} H_{j-1}(\mathrm{Cu}(N)) \rightarrow \cdots$,
so
$\cdots \rightarrow H_{j}(\mathrm{Cu}(N)) \xrightarrow{i_{*}} H_{j}(M) \xrightarrow{q} \tilde{H}_{j}(\mathrm{Th}(\nu)) \xrightarrow{\partial} H_{j-1}(\mathrm{Cu}(N)) \rightarrow \cdots$

- If N is a closed submanifold of M with l components, and $\operatorname{dim} M=d$,

Applications

(- The inclusion map $i: \mathrm{Cu}(N) \hookrightarrow M$ induces a long exact sequence in homology
$\cdots \rightarrow H_{j}(\mathrm{Cu}(N)) \xrightarrow{i_{*}} H_{j}(M) \rightarrow H_{j}(M, \mathrm{Cu}(N)) \xrightarrow{\partial} H_{j-1}(\mathrm{Cu}(N)) \rightarrow \cdots$,

SO
$\cdots \rightarrow H_{j}(\mathrm{Cu}(N)) \xrightarrow{i_{*}} H_{j}(M) \xrightarrow{q} \tilde{H}_{j}(\operatorname{Th}(\nu)) \xrightarrow{\partial} H_{j-1}(\mathrm{Cu}(N)) \rightarrow \cdots$

- If N is a closed submanifold of M with l components, and $\operatorname{dim} M=d$, then $H_{d-1}(\mathrm{Cu}(N))$ is free abelian of $\operatorname{rank} l-1$ and $H_{d-j}(\mathrm{Cu}(N)) \equiv H^{j}(M)$ if $j-2 \geq k$, where k is the maximum of the dimension of the components of N.

Applications

(- The inclusion map $i: \mathrm{Cu}(N) \hookrightarrow M$ induces a long exact sequence in homology
$\cdots \rightarrow H_{j}(\mathrm{Cu}(N)) \xrightarrow{i_{*}} H_{j}(M) \rightarrow H_{j}(M, \mathrm{Cu}(N)) \xrightarrow{\partial} H_{j-1}(\mathrm{Cu}(N)) \rightarrow \cdots$,

SO
$\cdots \rightarrow H_{j}(\mathrm{Cu}(N)) \xrightarrow{i_{*}} H_{j}(M) \xrightarrow{q} \tilde{H}_{j}(\operatorname{Th}(\nu)) \xrightarrow{\partial} H_{j-1}(\mathrm{Cu}(N)) \rightarrow \cdots$

- If N is a closed submanifold of M with l components, and $\operatorname{dim} M=d$, then $H_{d-1}(\mathrm{Cu}(N))$ is free abelian of $\operatorname{rank} l-1$ and $H_{d-j}(\mathrm{Cu}(N)) \equiv H^{j}(M)$ if $j-2 \geq k$, where k is the maximum of the dimension of the components of N.
- Let N be a smooth homology k-sphere, $k>0$, embedded in a smooth Riemannian manifold M homeomorphic to S^{d}.

Applications

(- The inclusion map $i: \mathrm{Cu}(N) \hookrightarrow M$ induces a long exact sequence in homology
$\cdots \rightarrow H_{j}(\mathrm{Cu}(N)) \xrightarrow{i_{*}} H_{j}(M) \rightarrow H_{j}(M, \mathrm{Cu}(N)) \xrightarrow{\partial} H_{j-1}(\mathrm{Cu}(N)) \rightarrow \cdots$,

SO
$\cdots \rightarrow H_{j}(\mathrm{Cu}(N)) \xrightarrow{i_{*}} H_{j}(M) \xrightarrow{q} \tilde{H}_{j}(\operatorname{Th}(\nu)) \xrightarrow{\partial} H_{j-1}(\mathrm{Cu}(N)) \rightarrow \cdots$

- If N is a closed submanifold of M with l components, and $\operatorname{dim} M=d$, then $H_{d-1}(\mathrm{Cu}(N))$ is free abelian of $\operatorname{rank} l-1$ and $H_{d-j}(\mathrm{Cu}(N)) \equiv H^{j}(M)$ if $j-2 \geq k$, where k is the maximum of the dimension of the components of N.
- Let N be a smooth homology k-sphere, $k>0$, embedded in a smooth Riemannian manifold M homeomorphic to S^{d}. If $d \geq k+3$, then the cut locus $\mathrm{Cu}(N)$ is homotopy equivalent to S^{d-k-1}.

Thank You for your attention!

