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For a complete Riemannian manifoldM and a compact submanifoldN ofM ,

Se(N) = Cu(N).
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Wewill prove the theorem for Se, i.e.,

Se(N/G) = Se(N)/G.

Since the action is isometric, Se(N) isG-invariant. Now in order to show
that Se(N) isG-invariant, let x ∈ Se(N). So there exists a sequence
(xn)⊂ Se(N) such that xn→ x, which implies g ·xn→ g ·x. Hence,
g ·x ∈ Se(N).
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a smooth subbundleH of TE, called the horizontal bundle of the connection,
such that TE =H⊕V , where Vp = ker

(
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.

The bundle V is called the vertical bundle and it is independent of the
connection chosen.
dπ restricts toHp is an isomorphism on Tπ(p)B.
dg mapsHp toHg·p.
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De�nition (Horizontal lift)

Let π : E→B be a �bre bundle with a connectionH. Let γ be a smooth curve in
B through γ(0) = b. Let e ∈ E be such that π(e) = b. A horizontal lift of γ
through e is a curve γ̃ inE such that π ◦ γ̃ = γ, γ̃(0) = e, and γ̃′(t) ∈Hγ̃(t).

Proposition (Uniqueness of horizontal lift)

If γ : [−1,1]→B is a smooth curve such that γ(0) = b and e0 ∈ π−1(b), then
there is a unique horizontal lift γ̃ through e0 ∈ E.
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Proof of the correspondence

Let π : E→B be a Riemannian submersion between Riemannian manifoldsE
andB.
Lemma (O’Neil)
If γ̃ is a geodesic onE and γ̃′(0) ∈Hγ(0), then for all t, γ′(t) ∈Hγ(t) and π ◦γ is
a geodesic onB. Moreover, the length is preserved.

Does the horizontal lift γ̃ of a geodesic γ become a geodesic?
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Let γ be a geodesic inB. If γ̃ is the horizontal lift of γ, then

l (γ) = l (γ̃).
γ̃′(t) ∈Hγ(t)

γ̃ is a geodesic inE.

Since π :M →M/G is Riemannian submersion, we will get a one-to-one
correspondence between the geodesics onM/G and geodesics onM which are
horizontal.
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Se(N)/G⊆ Se(N/G)

γ̃ is a geodesic and l (γ̃) = d(p̃,N)
=⇒ γ̃′(1) ∈Hγ̃(1)
=⇒ γ̃′(t) ∈Hγ̃(t) =⇒ γ̃ is a
horizontal geodesic =⇒ γ is a geodesic.
If p̃ ∈ Se(N), then there exists two
N -geodesic, say γ̃ and η̃. Due to
uniqueness of horizontal lift, both will
project to distinct geodesic and lengths
are same. Note that γ̃ is anN -geodesic
implies γ will be anN/G-geodesic.
Otherwise, ∃ δ which isN/G geodesic
joining p toN/G which gives a
horizontal lift δ̃ whose length is strictly
less than γ̃, a contradiction.
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uniqueness of horizontal lift, both will
project to distinct geodesic and lengths
are same. Note that γ̃ is anN -geodesic
implies γ will be anN/G-geodesic.
Otherwise, ∃ δ which isN/G geodesic
joining p toN/G which gives a
horizontal lift δ̃ whose length is strictly
less than γ̃, a contradiction.
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Thank you for your attention!
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