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For a complete Riemannian manifold M and a compact submanifold N of M,
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o We will prove the theorem for Se, i.e.,

Se(N/G) = Se(N)/G.

o Since the action is isometric, Se(N) is G-invariant. Now in order to show
that Se(N) is G-invariant, let x € Se(IV). So there exists a sequence
() C Se(IN) such that z,, — z, which implies g - z,, — ¢ - 2. Hence,

g-x € Se(N).
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Problems in the approach

@ Why is (7 0+y) a distance minimal
geodesic?

@ Why are (7 0y) and (7 on) distinct?
@ The same for the lifts.

M/G
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Definition (Ehresmann connection)

Given a smooth principal G-bundle 7 : E — B, an Ebresmann connection on E is
a smooth subbundle H of T'F, called the horizontal bundle of the connection,
such that TE = H @V, where V, = ker (d7rp T E — Tw(p)B).

o Thebundle V is called the vertical bundle and it is independent of the

connection chosen.
o d restricts to Hp is an isomorphism on T, B.

o dg maps Hy to Hg.p.
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Definition (Horizontal lift)

Let m: E — B be a fibre bundle with a connection H. Let v be a smooth curve in
B through v(0) = b. Let e € E be such that w(e) = b. A horizontal lift of
through e is a curve 7 in E such that o5 =, 5(0) = e, and ¥'(t) € Hyp).

Proposition (Uniqueness of horizontal lift)

Ify:[~1,1] = B isasmooth curve such that 7(0) = band eg € 7~ 1(b), then
there is a unique horizontal lift 7 through eg € F.
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Let m : E — B be a Riemannian submersion between Riemannian manifolds £
and B.

Lemma (O’Neil)

If 7 is a geodesicon E and 5'(0) € H.y ), then forall t, v'(t) € Ho ) and o~y is
a geodesic on B. Moreover, the length is preserved.

Does the horizontal lift 7 of a geodesic v become a geodesic?

Lemma
Let vy be a geodesic in B. If 7y is the horizontal lift of vy, then
o L(y)=1(%)

o (t) € Ho )
o 7 isa geodesic in I.

Since 7w : M — M /G is Riemannian submersion, we will get a one-to-one
correspondence between the geodesics on M /G and geodesics on M which are
horizontal.
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are same. Note that 7 is an N-geodesic
implies y will be an N/ G-geodesic.
lﬂ. Otherwise, 3 ¢ which is V/G geodesic
joining p to N/G which gives a
horizontal lift & whose length is strictly
less than 7, a contradiction.
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o Ifyisan N/G-geodesic starting from p,
then its horizontal lift & will be an
N-geodesic. If not, let 7 be such that
1(n) = d(p,N) which implies 7] is
horizontal. Hence, n = m o7 willbe a
geodesic and

I(y) =d(p,N/G) =1(n)
=1(7) <1(¥) =1(),

a contradiction.
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o Ifyisan N/G-geodesic starting from p,
then its horizontal lift & will be an
N-geodesic. If not, let 7 be such that
1(n) = d(p,N) which implies 7] is
horizontal. Hence, n = m o7 willbe a
geodesic and

l(v)=d(p,N/G)=1(n)
=1(7]) <1(¥) =1(7),
a contradiction.

o Thus,p € Se(N).



Thank you for your attention!
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