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Lemma (Fold lemma)

Let G be a graph, and v ̸= w vertices of G. Let N(v) denotes the set of all vertices v′

such that there is an edge between v and v′. IfN(v) ⊆ N(w) for some v andw,then

I(G \ w) ≃ I(G).

Theorem ([2, Proposition 4.6])

Let Pm be the path graph on m vertices. Then
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Sk−1, if m = 3k
pt, if m = 3k + 1
Sk, if m = 3k + 2.
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