Independence Complex of Wedge of Graphs ICTS In-House 2023

Sachchidanand Prasad

International Centre for Theoretical Sciences Bangalore

13th April 2023

Definition

Definition

A graph X is a pair (V, E) of a set of vertices V and edges E

Definition

Definition

Definition

Definition

Definition

Wedge of graphs

Wedge of graphs

Definition

If G_1 and G_2 are two graphs,

Wedge of graphs

Definition

Wedge of graphs

Definition

$$G_1 \bigvee_{\{v_1, v_2\}} G_2 \coloneqq \frac{G_1 \sqcup G_2}{v_1 \sim v_2}.$$

Wedge of graphs

Definition

$$G_1 \bigvee_{\{v_1, v_2\}} G_2 \coloneqq \frac{G_1 \sqcup G_2}{v_1 \sim v_2}$$

Wedge of graphs

Definition

$$G_1 \bigvee_{\{v_1, v_2\}} G_2 \coloneqq \frac{G_1 \sqcup G_2}{v_1 \sim v_2}$$

Wedge of graphs

Definition

$$G_1 \bigvee_{\{v_1, v_2\}} G_2 \coloneqq \frac{G_1 \sqcup G_2}{v_1 \sim v_2}$$

Independence Complex

Independence Complex

Definition (Abstract simplicial complex)

Independence Complex

Definition (Abstract simplicial complex)

An abstract simplicial complex K is a collection of subsets of $\{v_1, v_2, \ldots, v_n\}$ such that

• $\{v_i\} \in K \text{ for all } 1 \leq i \leq n,$

Independence Complex

Definition (Abstract simplicial complex)

- $\{v_i\} \in K \text{ for all } 1 \leq i \leq n,$
- if $\sigma \in K$ and $\tau \subseteq \sigma$, then $\tau \in K$.

Independence Complex

Definition (Abstract simplicial complex)

- $\{v_i\} \in K \text{ for all } 1 \leq i \leq n,$
- if $\sigma \in K$ and $\tau \subseteq \sigma$, then $\tau \in K$.

Independence Complex

Definition (Abstract simplicial complex)

- $\{v_i\} \in K$ for all $1 \le i \le n$,
- if $\sigma \in K$ and $\tau \subseteq \sigma$, then $\tau \in K$.

Independence Complex

Definition (Abstract simplicial complex)

- $\{v_i\} \in K$ for all $1 \le i \le n$,
- if $\sigma \in K$ and $\tau \subseteq \sigma$, then $\tau \in K$.

Independence Complex

Definition (Abstract simplicial complex)

- $\{v_i\} \in K \text{ for all } 1 \leq i \leq n,$
- if $\sigma \in K$ and $\tau \subseteq \sigma$, then $\tau \in K$.

Independence Complex

Definition (Independence Complex)

Independence Complex

Definition (Independence Complex)

For a finite simple graph G, with the vertex set V,

Independence Complex

Definition (Independence Complex)

For a finite simple graph G, with the vertex set V, the independence complex $\mathcal{I}(G)$ is the simplicial complex consisting of all independent subsets of V

Independence Complex

Definition (Independence Complex)

For a finite simple graph G, with the vertex set V, the independence complex $\mathcal{I}(G)$ is the simplicial complex consisting of all independent subsets of V (i.e. no two vertices are adjacent) as its simplices.

 $\mathcal{I}(P_3)$

 $\mathcal{I}\left(P_3\right)$

$$\mathcal{I}(P_3)\simeq\mathbb{S}^0$$

{1**}** ◀

• {2}

Background Independence complex of path graph

Independence complex of path graph

Lemma (Fold lemma)

Lemma (Fold lemma)

Let G be a graph, and $v \neq w$ vertices of G.

Lemma (Fold lemma)

Let G be a graph, and $v \neq w$ vertices of G. Let N(v) denotes the set of all vertices v' such that there is an edge between v and v'.

Lemma (Fold lemma)

Let G be a graph, and $v \neq w$ vertices of G. Let N(v) denotes the set of all vertices v' such that there is an edge between v and v'. If $N(v) \subseteq N(w)$ for some v and w,

Lemma (Fold lemma)

Let G be a graph, and $v \neq w$ vertices of G. Let N(v) denotes the set of all vertices v' such that there is an edge between v and v'. If $N(v) \subseteq N(w)$ for some v and w, then

 $\mathcal{I}(G \setminus w) \simeq \mathcal{I}(G).$

Lemma (Fold lemma)

Let G be a graph, and $v \neq w$ vertices of G. Let N(v) denotes the set of all vertices v' such that there is an edge between v and v'. If $N(v) \subseteq N(w)$ for some v and w, then

 $\mathcal{I}(G \setminus w) \simeq \mathcal{I}(G).$

Theorem ([2, Proposition 4.6])

Let P_m be the path graph on m vertices. Then

$$\mathcal{I}(P_m) \simeq \begin{cases} \mathbb{S}^{k-1}, & \text{if } m = 3k \\ pt, & \text{if } m = 3k+1 \\ \mathbb{S}^k, & \text{if } m = 3k+2. \end{cases}$$

$$\mathcal{I}(C_3) = \mathbb{S}^0 \vee \mathbb{S}^0$$

Examples: C_4

 $\mathcal{I}\left(C_{4}\right)\simeq\mathbb{S}^{0}$

Independence complex of cycle graph

Theorem ([2, Proposition 5.2])

Let C_n be the cycle graph on n vertices. Then

$$\mathcal{I}(C_n) \simeq \begin{cases} \mathbb{S}^{k-1} \vee \mathbb{S}^{k-1}, & \text{if } n = 3k \\ \mathbb{S}^{k-1}, & \text{if } n = 3k+1 \\ \mathbb{S}^k, & \text{if } n = 3k+2. \end{cases}$$

Main results

Independence complex of wedge of paths

Independence complex of wedge of paths

Theorem (____, Panja, Daundkar, [1])

Let P_l be the path graph on l vertices. Then

$$\mathcal{I}\left(P_m \underset{a}{\lor} P_n\right)$$

is either a point or a sphere.

Lemma

Let G be a graph, and $v \neq w$ vertices of G. Let N(v) denotes the set of all vertices v'such that there is an edge between v and v'. If $N(v) \subseteq N(w)$ for some v and w, then $\mathcal{I}(G \setminus w) \simeq \mathcal{I}(G)$.

Lemma

Let G be a graph, and $v \neq w$ vertices of G. Let N(v) denotes the set of all vertices v'such that there is an edge between v and v'. If $N(v) \subseteq N(w)$ for some v and w, then $\mathcal{I}(G \setminus w) \simeq \mathcal{I}(G)$.

Main results
Independence complex of wedge of cycles

Independence complex of wedge of cycles

Theorem (____, Panja, Daundkar, [1])

Let C_m be the cycle graph with m vertices. Then

 $\mathcal{I}\left(C_m \underset{a}{\lor} C_n\right)$

is contractible or homotopy equivalent to wedge of spheres.

Main results
Independence complex of wedge of cycles

Definition (Link)

Let K be a (abstract) simplicial complex. The link of a vertex $v \in K$ is defined as

 $\mathrm{lk}(v,K)\coloneqq \{\sigma\in K\mid v\notin\sigma \text{ and }\sigma\cup v\in K\}.$

Definition (Link)

Let K be a (abstract) simplicial complex. The link of a vertex $v \in K$ is defined as

$$\operatorname{lk}(v,K) \coloneqq \{ \sigma \in K \mid v \notin \sigma \text{ and } \sigma \cup v \in K \}.$$

Definition (Deletion)

Let K be a (abstract) simplicial complex. The deletion of a vertex $v \in K$ is defined as $del(v, K) := \{ \sigma \in K \mid v \notin \sigma \}.$

Definition (Link)

Let K be a (abstract) simplicial complex. The link of a vertex $v \in K$ is defined as

$$\operatorname{lk}(v,K) \coloneqq \{ \sigma \in K \mid v \notin \sigma \text{ and } \sigma \cup v \in K \}.$$

Definition (Deletion)

Let K be a (abstract) simplicial complex. The deletion of a vertex $v \in K$ is defined as $del(v, K) := \{ \sigma \in K \mid v \notin \sigma \}.$

Lemma

Let K be a simplicial complex and $v \in K$ be a vertex such that lk(v, K) is contractible in del(v, K).

Definition (Link)

Let K be a (abstract) simplicial complex. The link of a vertex $v \in K$ is defined as

$$\operatorname{lk}(v,K) \coloneqq \{ \sigma \in K \mid v \notin \sigma \text{ and } \sigma \cup v \in K \}.$$

Definition (Deletion)

Let K be a (abstract) simplicial complex. The deletion of a vertex $v \in K$ is defined as $del(v, K) := \{ \sigma \in K \mid v \notin \sigma \}.$

Lemma

Let K be a simplicial complex and $v \in K$ be a vertex such that lk(v, K) is contractible in del(v, K). Then $K \simeq del(v, K) \vee \sum lk(v, K)$.

Independence complex of wedge of paths and cycles

Independence complex of wedge of paths and cycles

Theorem (____, Panja, Daundkar, [1])

The independence complex

$$\mathcal{I}\left(C_m \underset{a}{\lor} P_n\right)$$

is homotopy equivalent to either a point or wedge of spheres.

D. N. KOZLOV, *Complexes of directed trees*, J. Combin. Theory Ser. A, 88 (1999), pp. 112–122.

Thank you for your attention!