Independence Complex of Wedge of Graphs
 ICTS In-House 2023

Sachchidanand Prasad
International Centre for Theoretical Sciences Bangalore

13th April 2023

Background

Definition

Definition

A graph X is a pair (V, E) of a set of vertices V and edges E

Definition

A graph X is a pair (V, E) of a set of vertices V and edges E that associates each edge two vertices (not necessarily distinct) called its endpoints.

Definition

A graph X is a pair (V, E) of a set of vertices V and edges E that associates each edge two vertices (not necessarily distinct) called its endpoints.

Definition

A graph X is a pair (V, E) of a set of vertices V and edges E that associates each edge two vertices (not necessarily distinct) called its endpoints.

Definition

A graph X is a pair (V, E) of a set of vertices V and edges E that associates each edge two vertices (not necessarily distinct) called its endpoints.

Definition

A graph X is a pair (V, E) of a set of vertices V and edges E that associates each edge two vertices (not necessarily distinct) called its endpoints.

Background

Wedge of graphs

Definition

If G_{1} and G_{2} are two graphs,

Definition

If G_{1} and G_{2} are two graphs, then the wedge of these two graphs with respect to $v_{1} \in G_{1}$ and $v_{2} \in G_{2}$ is defined as

Definition

If G_{1} and G_{2} are two graphs, then the wedge of these two graphs with respect to $v_{1} \in G_{1}$ and $v_{2} \in G_{2}$ is defined as

$$
G_{1} \bigvee_{\left\{v_{1}, v_{2}\right\}} G_{2}:=\frac{G_{1} \sqcup G_{2}}{v_{1} \sim v_{2}} .
$$

Definition

If G_{1} and G_{2} are two graphs, then the wedge of these two graphs with respect to $v_{1} \in G_{1}$ and $v_{2} \in G_{2}$ is defined as

$$
G_{1} \bigvee_{\left\{v_{1}, v_{2}\right\}} G_{2}:=\frac{G_{1} \sqcup G_{2}}{v_{1} \sim v_{2}} .
$$

Definition

If G_{1} and G_{2} are two graphs, then the wedge of these two graphs with respect to $v_{1} \in G_{1}$ and $v_{2} \in G_{2}$ is defined as

$$
G_{1} \bigvee_{\left\{v_{1}, v_{2}\right\}} G_{2}:=\frac{G_{1} \sqcup G_{2}}{v_{1} \sim v_{2}} .
$$

Definition

If G_{1} and G_{2} are two graphs, then the wedge of these two graphs with respect to $v_{1} \in G_{1}$ and $v_{2} \in G_{2}$ is defined as

$$
G_{1} \bigvee_{\left\{v_{1}, v_{2}\right\}} G_{2}:=\frac{G_{1} \sqcup G_{2}}{v_{1} \sim v_{2}}
$$

Independence Complex

Independence Complex

Definition (Abstract simplicial complex)
An abstract simplicial complex K is a collection of subsets of $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such that

Independence Complex

Definition (Abstract simplicial complex)

An abstract simplicial complex K is a collection of subsets of $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such that

- $\left\{v_{i}\right\} \in K$ for all $1 \leq i \leq n$,

Independence Complex

Definition (Abstract simplicial complex)

An abstract simplicial complex K is a collection of subsets of $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such that

- $\left\{v_{i}\right\} \in K$ for all $1 \leq i \leq n$,
(0) if $\sigma \in K$ and $\tau \subseteq \sigma$, then $\tau \in K$.

Independence Complex

Definition (Abstract simplicial complex)

An abstract simplicial complex K is a collection of subsets of $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such that

- $\left\{v_{i}\right\} \in K$ for all $1 \leq i \leq n$,
(0) if $\sigma \in K$ and $\tau \subseteq \sigma$, then $\tau \in K$.

$$
\left\{v_{4}\right\}
$$

$$
\left\{v_{1}\right\} \quad\left\{v_{3}\right\}
$$

$$
\left\{\begin{array}{cc}
\bullet & \bullet \\
\left.v_{2}\right\} & \left.\bullet v_{5}\right\}
\end{array}\right.
$$

Independence Complex

Definition (Abstract simplicial complex)

An abstract simplicial complex K is a collection of subsets of $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such that

- $\left\{v_{i}\right\} \in K$ for all $1 \leq i \leq n$,
(0) if $\sigma \in K$ and $\tau \subseteq \sigma$, then $\tau \in K$.

Independence Complex

Definition (Abstract simplicial complex)

An abstract simplicial complex K is a collection of subsets of $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such that

- $\left\{v_{i}\right\} \in K$ for all $1 \leq i \leq n$,
(0) if $\sigma \in K$ and $\tau \subseteq \sigma$, then $\tau \in K$.

$$
\left\{v_{4}\right\}
$$

$\left\{v_{5}\right\}$

Independence Complex

Definition (Abstract simplicial complex)

An abstract simplicial complex K is a collection of subsets of $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such that

- $\left\{v_{i}\right\} \in K$ for all $1 \leq i \leq n$,
(0) if $\sigma \in K$ and $\tau \subseteq \sigma$, then $\tau \in K$.

$$
\left\{v_{4}\right\}
$$

$\left\{v_{5}\right\}$

Independence Complex

Definition (Independence Complex)

Independence Complex

Definition (Independence Complex)

For a finite simple graph G, with the vertex set V,

Independence Complex

Definition (Independence Complex)

For a finite simple graph G, with the vertex set V, the independence complex $\mathcal{I}(G)$ is the simplicial complex consisting of all independent subsets of V

Definition (Independence Complex)

For a finite simple graph G, with the vertex set V, the independence complex $\mathcal{I}(G)$ is the simplicial complex consisting of all independent subsets of V (i.e. no two vertices are adjacent) as its simplices.

Examples: P_{3}

P_{3}

Examples: P_{3}

\{1\} $\quad\{2\} \quad\{3\}$

Examples: P_{3}

$\{1,3\}$

Examples: P_{3}

Examples: P_{3}

\{1\} $\quad\{2\}$
$\mathcal{I}\left(P_{3}\right)$
$\{1,3\}$

Examples: P_{3}

$\{1\}\{3\} \quad\{2\}$

$$
\mathcal{I}\left(P_{3}\right)
$$

Examples: P_{3}

$\{1\}\{3\} \quad\{2\}$

$$
\mathcal{I}\left(P_{3}\right)
$$

$$
\mathcal{I}\left(P_{3}\right) \simeq \mathbb{S}^{0}
$$

Examples: P_{4}

Examples: P_{4}

\{4\}
$\{1\} \bullet$

- $\{2\}$
$\{3\}$

Examples: P_{4}

$\{4\}$

- $\{2\}$

Examples: P_{4}

Examples: P_{4}

Examples: P_{4}

$\mathcal{I}\left(P_{4}\right)$

Examples: P_{4}

$\mathcal{I}\left(P_{4}\right)$

$$
\mathcal{I}\left(P_{4}\right) \simeq\{\star\}
$$

Examples: P_{5}

Examples: P_{5}

\{1\} •

- $\{2\}$
\{3\}
\{5\}

Examples: P_{5}

Examples: P_{5}

$\mathcal{I}\left(P_{5}\right)$

Examples: P_{5}

$\mathcal{I}\left(P_{5}\right)$

Examples: P_{5}

$\mathcal{I}\left(P_{5}\right)$

Examples: P_{5}

$\mathcal{I}\left(P_{5}\right)$

$$
\mathcal{I}\left(P_{5}\right) \simeq \mathbb{S}^{1}
$$

Independence complex of path graph

Independence complex of path graph

Lemma (Fold lemma)

Independence complex of path graph

Lemma (Fold lemma)

Let G be a graph, and $v \neq w$ vertices of G.

Independence complex of path graph

Lemma (Fold lemma)

Let G be a graph, and $v \neq w$ vertices of G. Let $N(v)$ denotes the set of all vertices v^{\prime} such that there is an edge between v and v^{\prime}.

Independence complex of path graph

Lemma (Fold lemma)

Let G be a graph, and $v \neq w$ vertices of G. Let $N(v)$ denotes the set of all vertices v^{\prime} such that there is an edge between v and v^{\prime}. If $N(v) \subseteq N(w)$ for some v and w,

Independence complex of path graph

Lemma (Fold lemma)

Let G be a graph, and $v \neq w$ vertices of G. Let $N(v)$ denotes the set of all vertices v^{\prime} such that there is an edge between v and v^{\prime}. If $N(v) \subseteq N(w)$ for some v and w, then

$$
\mathcal{I}(G \backslash w) \simeq \mathcal{I}(G)
$$

Independence complex of path graph

Lemma (Fold lemma)

Let G be a graph, and $v \neq w$ vertices of G. Let $N(v)$ denotes the set of all vertices v^{\prime} such that there is an edge between v and v^{\prime}. If $N(v) \subseteq N(w)$ for some v and w, then

$$
\mathcal{I}(G \backslash w) \simeq \mathcal{I}(G)
$$

Theorem ([2, Proposition 4.6])
Let P_{m} be the path graph on m vertices. Then

$$
\mathcal{I}\left(P_{m}\right) \simeq \begin{cases}\mathbb{S}^{k-1}, & \text { if } m=3 k \\ p t, & \text { if } m=3 k+1 \\ \mathbb{S}^{k}, & \text { if } m=3 k+2\end{cases}
$$

Examples: C_{3}

Examples: C_{3}

Examples: C_{3}

$$
\mathcal{I}\left(C_{3}\right)=\mathbb{S}^{0} \vee \mathbb{S}^{0}
$$

Examples: C_{4}

$\{1\} \bullet \bullet\{3\}$
$\{2\} \bullet$

- $\{4\}$

Examples: C_{4}

$\{1\} \bullet \longrightarrow\{3\}$
$\{2\} \bullet \longrightarrow\{4\}$

Examples: C_{4}

$$
\begin{array}{ll}
\{1\} \bullet & \\
\{2\} \bullet\{3\} \\
& \bullet\{4\} \\
& \\
& \\
& \\
& \\
\text { I }\left(C_{4}\right) &
\end{array}
$$

Examples: C_{4}

$$
\mathcal{I}\left(C_{4}\right) \simeq \mathbb{S}^{0}
$$

Examples: C_{5}

Examples: C_{5}

\{3\}
$\begin{array}{ll}\{1\} \bullet & \bullet\{5\} \\ & \\ \{4\} & \bullet \\ & \bullet 2\}\end{array}$

Examples: C_{5}

Examples: C_{5}

Examples: C_{5}

Examples: C_{5}

Examples: C_{5}

Independence complex of cycle graph

Theorem ([2, Proposition 5.2])
Let C_{n} be the cycle graph on n vertices. Then

$$
\mathcal{I}\left(C_{n}\right) \simeq \begin{cases}\mathbb{S}^{k-1} \vee \mathbb{S}^{k-1}, & \text { if } n=3 k \\ \mathbb{S}^{k-1}, & \text { if } n=3 k+1 \\ \mathbb{S}^{k}, & \text { if } n=3 k+2\end{cases}
$$

Main results

Independence complex of wedge of paths

Independence complex of wedge of paths

Theorem (—, Panja, Daundkar, [r])
Let P_{l} be the path graph on l vertices. Then

$$
\mathcal{I}\left(P_{m} \underset{a}{\vee} P_{n}\right)
$$

is either a point or a sphere.

Main results

Main results

Lemma

Let G be a graph, and $v \neq w$ vertices of G. Let $N(v)$ denotes the set of all vertices v^{\prime} such that there is an edge between v and v^{\prime}. If $N(v) \subseteq N(w)$ for some v and w, then

$$
\mathcal{I}(G \backslash w) \simeq \mathcal{I}(G)
$$

Lemma

Let G be a graph, and $v \neq w$ vertices of G. Let $N(v)$ denotes the set of all vertices v^{\prime} such that there is an edge between v and v^{\prime}. If $N(v) \subseteq N(w)$ for some v and w, then

$$
\mathcal{I}(G \backslash w) \simeq \mathcal{I}(G)
$$

Independence complex of wedge of cycles

Independence complex of wedge of cycles

Theorem (—, Panja, Daundkar, [I])
Let C_{m} be the cycle graph with m vertices. Then

$$
\mathcal{I}\left(C_{m} \underset{a}{\vee} C_{n}\right)
$$

is contractible or homotopy equivalent to wedge of spheres.

Independence complex of wedge of cycles

Independence complex of wedge of cycles

Definition (Link)

Let K be a (abstract) simplicial complex. The link of a vertex $v \in K$ is defined as

$$
\operatorname{lk}(v, K):=\{\sigma \in K \mid v \notin \sigma \text { and } \sigma \cup v \in K\} .
$$

Independence complex of wedge of cycles

Definition (Link)

Let K be a (abstract) simplicial complex. The link of a vertex $v \in K$ is defined as

$$
\operatorname{lk}(v, K):=\{\sigma \in K \mid v \notin \sigma \text { and } \sigma \cup v \in K\}
$$

Definition (Deletion)

Let K be a (abstract) simplicial complex. The deletion of a vertex $v \in K$ is defined as

$$
\operatorname{del}(v, K):=\{\sigma \in K \mid v \notin \sigma\} .
$$

Independence complex of wedge of cycles

Definition (Link)

Let K be a (abstract) simplicial complex. The link of a vertex $v \in K$ is defined as

$$
\operatorname{lk}(v, K):=\{\sigma \in K \mid v \notin \sigma \text { and } \sigma \cup v \in K\} .
$$

Definition (Deletion)

Let K be a (abstract) simplicial complex. The deletion of a vertex $v \in K$ is defined as

$$
\operatorname{del}(v, K):=\{\sigma \in K \mid v \notin \sigma\} .
$$

Lemma

Let K be a simplicial complex and $v \in K$ be a vertex such that $1 \mathrm{k}(v, K)$ is contractible in $\operatorname{del}(v, K)$.

Independence complex of wedge of cycles

Definition (Link)

Let K be a (abstract) simplicial complex. The link of a vertex $v \in K$ is defined as

$$
\operatorname{lk}(v, K):=\{\sigma \in K \mid v \notin \sigma \text { and } \sigma \cup v \in K\} .
$$

Definition (Deletion)

Let K be a (abstract) simplicial complex. The deletion of a vertex $v \in K$ is defined as

$$
\operatorname{del}(v, K):=\{\sigma \in K \mid v \notin \sigma\} .
$$

Lemma

Let K be a simplicial complex and $v \in K$ be a vertex such that $1 \mathrm{k}(v, K)$ is contractible in $\operatorname{del}(v, K)$. Then $K \simeq \operatorname{del}(v, K) \vee \sum \operatorname{lk}(v, K)$.

Independence complex of wedge of paths and cycles

Independence complex of wedge of paths and cycles

Theorem (—, Panja, Daundkar, [r])

The independence complex

$$
\mathcal{I}\left(C_{m} \underset{a}{\vee} P_{n}\right)
$$

is homotopy equivalent to either a point or wedge of spheres.
N. Daundkar, S. Panja, and S. Prasad, Independence complexes of wedge of graphs.
https://arxiv.org/abs/2303.08798.
D. N. Kozlov, Complexes of directed trees, J. Combin. Theory Ser. A, 88 (1999), pp. II2-I22.

Thank you for your attention!

