Cut Locus of Submanifolds: A Geometric Viewpoint Seminar GANIT IIT Gandhinagar

Sachchidanand Prasad

Indian Institute of Science Education and Research Kolkata

10th October 2022

- 2 Deformation of complement of the cut locus
 - 3 Equivariant cut locus theorem
- 4 Idea of the proof
- S Geodesics on M and M/G
- O Proof of the main theorem

Applications

Background

Cut locus of a point

Cut locus of a point

Definition (Cut locus of a point)

Definition (Cut locus of a point)

Let M be a Riemannian manifold

Definition (Cut locus of a point)

Let M be a Riemannian manifold and p be any point in M.

Definition (Cut locus of a point)

Let *M* be a Riemannian manifold and *p* be any point in *M*. If Cu(p) denotes the *cut locus of p*,

Definition (Cut locus of a point)

Let *M* be a Riemannian manifold and *p* be any point in *M*. If Cu(p) denotes the *cut locus of p*, then we say that $q \in Cu(p)$ if there exists a distance minimal geodesic joining *p* to *q*

Definition (Cut locus of a point)

Let *M* be a Riemannian manifold and *p* be any point in *M*. If Cu(p) denotes the *cut locus of p*, then we say that $q \in Cu(p)$ if there exists a distance minimal geodesic joining *p* to *q* such that any extension of it beyond *q* is not a distance minimal geodesic.

Definition (Distance minimal geodesic)

Definition (Distance minimal geodesic)

A geodesic γ is called a *distance minimal geodesic* joining N to p

Definition (Distance minimal geodesic)

A geodesic γ is called a *distance minimal geodesic* joining N to p if there exists $q \in N$

Definition (Distance minimal geodesic)

A geodesic γ is called a *distance minimal geodesic* joining *N* to *p* if there exists $q \in N$ such that γ is a minimal geodesic joining *q* to *p*

Definition (Distance minimal geodesic)

A geodesic γ is called a *distance minimal geodesic* joining *N* to *p* if there exists $q \in N$ such that γ is a minimal geodesic joining *q* to *p* and $l(\gamma) = d(p, N)$.

Definition (Distance minimal geodesic)

A geodesic γ is called a *distance minimal geodesic* joining *N* to *p* if there exists $q \in N$ such that γ is a minimal geodesic joining *q* to *p* and $l(\gamma) = d(p, N)$. We will call such geodesics as *N*-geodesics.

Definition (Distance minimal geodesic)

A geodesic γ is called a *distance minimal geodesic* joining *N* to *p* if there exists $q \in N$ such that γ is a minimal geodesic joining *q* to *p* and $l(\gamma) = d(p,N)$. We will call such geodesics as *N*-geodesics.

Definition (Cut locus of a submanifold)

Definition (Distance minimal geodesic)

A geodesic γ is called a *distance minimal geodesic* joining *N* to *p* if there exists $q \in N$ such that γ is a minimal geodesic joining *q* to *p* and $l(\gamma) = d(p,N)$. We will call such geodesics as *N*-geodesics.

Definition (Cut locus of a submanifold)

Let *M* be a Riemannian manifold

Definition (Distance minimal geodesic)

A geodesic γ is called a *distance minimal geodesic* joining *N* to *p* if there exists $q \in N$ such that γ is a minimal geodesic joining *q* to *p* and $l(\gamma) = d(p,N)$. We will call such geodesics as *N*-geodesics.

Definition (Cut locus of a submanifold)

Let M be a Riemannian manifold and N be any non-empty subset of M.

Definition (Distance minimal geodesic)

A geodesic γ is called a *distance minimal geodesic* joining *N* to *p* if there exists $q \in N$ such that γ is a minimal geodesic joining *q* to *p* and $l(\gamma) = d(p,N)$. We will call such geodesics as *N*-geodesics.

Definition (Cut locus of a submanifold)

Let *M* be a Riemannian manifold and *N* be any non-empty subset of *M*. If Cu(N) denotes the *cut locus of N*,

Definition (Distance minimal geodesic)

A geodesic γ is called a *distance minimal geodesic* joining *N* to *p* if there exists $q \in N$ such that γ is a minimal geodesic joining *q* to *p* and $l(\gamma) = d(p,N)$. We will call such geodesics as *N*-geodesics.

Definition (Cut locus of a submanifold)

Let *M* be a Riemannian manifold and *N* be any non-empty subset of *M*. If Cu(N) denotes the *cut locus of N*, then we say that $q \in Cu(N)$ if there exists an *N*-geodesic joining *N* to *q*

Definition (Distance minimal geodesic)

A geodesic γ is called a *distance minimal geodesic* joining *N* to *p* if there exists $q \in N$ such that γ is a minimal geodesic joining *q* to *p* and $l(\gamma) = d(p,N)$. We will call such geodesics as *N*-geodesics.

Definition (Cut locus of a submanifold)

Let *M* be a Riemannian manifold and *N* be any non-empty subset of *M*. If Cu(N) denotes the *cut locus of N*, then we say that $q \in Cu(N)$ if there exists an *N*-geodesic joining *N* to *q* such that any extension of it beyond *q* is not a distance minimal geodesic.

An Example

An Example

Separating set of N

Definition (Separating set)

Definition (Separating set)

Let N be a subset of a Riemannian manifold M.

Definition (Separating set)

Let N be a subset of a Riemannian manifold M. The *separating set*, denoted by Se(N),

Definition (Separating set)

Let *N* be a subset of a Riemannian manifold *M*. The *separating set*, denoted by Se(N), consists of all points $q \in M$

Definition (Separating set)

Let *N* be a subset of a Riemannian manifold *M*. The *separating set*, denoted by Se(N), consists of all points $q \in M$ such that at least two distance minimal geodesics from *N* to *q* exist.

Relation between separating set and cut locus

Theorem (Basu, S. and Prasad, S. [1])

For a complete Riemannian manifold M and a compact submanifold N of M,

 $\overline{\operatorname{Se}(N)} = \operatorname{Cu}(N).$

Deformation of complement of the cut locus

Deformation of complement of the cut locus

Theorem (Basu, S. and Prasad, S. [1])

Theorem (Basu, S. and Prasad, S. [1])

Let M be a connected,

Theorem (Basu, S. and Prasad, S. [1])

Let M be a connected, complete Riemannian manifold

Theorem (Basu, S. and Prasad, S. [1])

Let M be a connected, complete Riemannian manifold and N be an embedded submanifold of M.

Theorem (Basu, S. and Prasad, S. [1])

Let M be a connected, complete Riemannian manifold and *N* be an embedded submanifold of *M*. Suppose two *N*-geodesics exists joining *N* to $q \in M$.

Theorem (Basu, S. and Prasad, S. [1])

Let *M* be a connected, complete Riemannian manifold and *N* be an embedded submanifold of *M*. Suppose two *N*-geodesics exists joining *N* to $q \in M$. Then $d^2(N, \cdot) : M \to \mathbb{R}$ has no directional derivative at q

Theorem (Basu, S. and Prasad, S. [1])

Let *M* be a connected, complete Riemannian manifold and *N* be an embedded submanifold of *M*. Suppose two *N*-geodesics exists joining *N* to $q \in M$. Then $d^2(N, \cdot) : M \to \mathbb{R}$ has no directional derivative at *q* for vectors in direction of those two *N*-geodesic.

Theorem (Basu, S. and Prasad, S. [1])

Let *M* be a connected, complete Riemannian manifold and *N* be an embedded submanifold of *M*. Suppose two *N*-geodesics exists joining *N* to $q \in M$. Then $d^2(N, \cdot) : M \to \mathbb{R}$ has no directional derivative at *q* for vectors in direction of those two *N*-geodesic.

Theorem (Basu, S. and Prasad, S. [1])

Let M be a complete Riemannian manifold

Theorem (Basu, S. and Prasad, S. [1])

Let *M* be a connected, complete Riemannian manifold and *N* be an embedded submanifold of *M*. Suppose two *N*-geodesics exists joining *N* to $q \in M$. Then $d^2(N, \cdot) : M \to \mathbb{R}$ has no directional derivative at *q* for vectors in direction of those two *N*-geodesic.

Theorem (Basu, S. and Prasad, S. [1])

Let M be a complete Riemannian manifold and N be compact submanifold of M.

Theorem (Basu, S. and Prasad, S. [1])

Let *M* be a connected, complete Riemannian manifold and *N* be an embedded submanifold of *M*. Suppose two *N*-geodesics exists joining *N* to $q \in M$. Then $d^2(N, \cdot) : M \to \mathbb{R}$ has no directional derivative at *q* for vectors in direction of those two *N*-geodesic.

Theorem (Basu, S. and Prasad, S. [1])

Let M be a complete Riemannian manifold and N be compact submanifold of M. Then N is a deformation retract of M - Cu(N).

Theorem (Basu, S. and Prasad, S. [1])

Let *M* be a connected, complete Riemannian manifold and *N* be an embedded submanifold of *M*. Suppose two *N*-geodesics exists joining *N* to $q \in M$. Then $d^2(N, \cdot) : M \to \mathbb{R}$ has no directional derivative at *q* for vectors in direction of those two *N*-geodesic.

Theorem (Basu, S. and Prasad, S. [1])

Let M be a complete Riemannian manifold and N be compact submanifold of M. Then N is a deformation retract of M - Cu(N).

Theorem (Basu, S. and Prasad, S. [1])

The cut locus Cu(N) is a strong deformation retract of M - N.

Theorem (Basu, S. and Prasad, S. [1])

Let *M* be a connected, complete Riemannian manifold and *N* be an embedded submanifold of *M*. Suppose two *N*-geodesics exists joining *N* to $q \in M$. Then $d^2(N, \cdot) : M \to \mathbb{R}$ has no directional derivative at *q* for vectors in direction of those two *N*-geodesic.

Theorem (Basu, S. and Prasad, S. [1])

Let M be a complete Riemannian manifold and N be compact submanifold of M. Then N is a deformation retract of M - Cu(N).

Theorem (Basu, S. and Prasad, S. [1])

The cut locus Cu(N) is a strong deformation retract of M - N. In particular, (M, Cu(N)) is a good pair

Theorem (Basu, S. and Prasad, S. [1])

Let *M* be a connected, complete Riemannian manifold and *N* be an embedded submanifold of *M*. Suppose two *N*-geodesics exists joining *N* to $q \in M$. Then $d^2(N, \cdot) : M \to \mathbb{R}$ has no directional derivative at *q* for vectors in direction of those two *N*-geodesic.

Theorem (Basu, S. and Prasad, S. [1])

Let M be a complete Riemannian manifold and N be compact submanifold of M. Then N is a deformation retract of M - Cu(N).

Theorem (Basu, S. and Prasad, S. [1])

The cut locus Cu(N) is a strong deformation retract of M - N. In particular, (M, Cu(N)) is a good pair and the number of path components of Cu(N) equals that of M - N.

Outline of the proof of the deformation

Outline of the proof of the deformation

Define

$$\mathbf{s}: S(\mathbf{v}) \to [0,\infty], \, \mathbf{s}(\mathbf{v}) := \sup\{t \in [0,\infty) \mid \gamma_{\mathbf{v}}|_{[0,t]} \text{ is an } N \text{-geodesic}\},\$$

where S(v) is the unit normal bundle of *N* and $[0,\infty]$ is the one-point compactification of $[0,\infty)$.
Define

$$\mathbf{s}: S(\mathbf{v}) \to [0,\infty], \, \mathbf{s}(\mathbf{v}) := \sup\{t \in [0,\infty) \,|\, \gamma_{\mathbf{v}}|_{[0,t]} \text{ is an } N \text{-geodesic}\},$$

where S(v) is the unit normal bundle of *N* and $[0,\infty]$ is the one-point compactification of $[0,\infty)$. The map **s** is continuous

Define

$$\mathbf{s}: S(\mathbf{v}) \to [0,\infty], \, \mathbf{s}(\mathbf{v}) := \sup\{t \in [0,\infty) \, | \, \gamma_{\mathbf{v}}|_{[0,t]} \text{ is an } N \text{-geodesic}\},$$

where S(v) is the unit normal bundle of *N* and $[0,\infty]$ is the one-point compactification of $[0,\infty)$. The map **s** is continuous and is finite if *M* is compact.

Define

$$\mathbf{s}: S(\mathbf{v}) \to [0,\infty], \, \mathbf{s}(\mathbf{v}) := \sup\{t \in [0,\infty) \, | \, \gamma_{\mathbf{v}}|_{[0,t]} \text{ is an } N \text{-geodesic}\},$$

where S(v) is the unit normal bundle of *N* and $[0,\infty]$ is the one-point compactification of $[0,\infty)$. The map **s** is continuous and is finite if *M* is compact. Note that the cut locus is

$$\operatorname{Cu}(N) = \exp_{v} \left\{ \mathbf{s}(v)v : v \in S(v) \right\},$$

Define

$$\mathbf{s}: S(\mathbf{v}) \to [0,\infty], \, \mathbf{s}(\mathbf{v}) := \sup\{t \in [0,\infty) \, | \, \gamma_{\mathbf{v}}|_{[0,t]} \text{ is an } N \text{-geodesic}\},$$

where S(v) is the unit normal bundle of *N* and $[0,\infty]$ is the one-point compactification of $[0,\infty)$. The map **s** is continuous and is finite if *M* is compact. Note that the cut locus is

$$\operatorname{Cu}(N) = \exp_{v} \left\{ \mathbf{s}(v)v : v \in S(v) \right\},$$

where $\exp_{v} : v \to M$, $\exp_{v}(p,v) := \exp_{p}(v)$.

Define

$$\mathbf{s}: S(\mathbf{v}) \to [0,\infty], \, \mathbf{s}(\mathbf{v}) := \sup\{t \in [0,\infty) \, | \, \gamma_{\mathbf{v}}|_{[0,t]} \text{ is an } N \text{-geodesic}\},\$$

where S(v) is the unit normal bundle of *N* and $[0,\infty]$ is the one-point compactification of $[0,\infty)$. The map **s** is continuous and is finite if *M* is compact. Note that the cut locus is

$$\operatorname{Cu}(N) = \exp_{v} \left\{ \mathbf{s}(v)v : v \in S(v) \right\},$$

where $\exp_{v} : v \to M$, $\exp_{v}(p,v) := \exp_{p}(v)$. Define an open neighborhood $U_{0}(N)$ of the zero section in the normal bundle as

$$U_0(N) := \{av : 0 \le a < \mathbf{s}(v), v \in S(v)\}.$$

Define

$$\mathbf{s}: S(\mathbf{v}) \to [0,\infty], \, \mathbf{s}(\mathbf{v}) := \sup\{t \in [0,\infty) \, | \, \gamma_{\mathbf{v}}|_{[0,t]} \text{ is an } N \text{-geodesic}\},$$

where S(v) is the unit normal bundle of *N* and $[0,\infty]$ is the one-point compactification of $[0,\infty)$. The map **s** is continuous and is finite if *M* is compact. Note that the cut locus is

$$\operatorname{Cu}(N) = \exp_{v} \left\{ \mathbf{s}(v)v : v \in S(v) \right\},$$

where $\exp_v : v \to M$, $\exp_v(p, v) := \exp_p(v)$. Define an open neighborhood $U_0(N)$ of the zero section in the normal bundle as

$$U_0(N) := \{av : 0 \le a < \mathbf{s}(v), v \in S(v)\}.$$

Note that \exp_{v} is a diffeomorphism on $U_{0}(N)$ and set $U(N) = \exp_{v}(U_{0}(N)) = M - \operatorname{Cu}(N)$.

The space $U_0(N)$ deforms to the zero section on the normal bundle.

The space $U_0(N)$ deforms to the zero section on the normal bundle.

 $H: U_0(N) \times [0,1] \to U_0(N), ((p,av),t) \mapsto (p,tav).$

Now consider the following diagram:

$$\begin{array}{c} U_0(N) \times [0,1] \xrightarrow{H} & U_0(N) \\ \stackrel{\exp_{\nu}^{-1}}{} & \downarrow^{exp_{\nu}} \\ U \times [0,1] \xrightarrow{F} & U \cong M - \operatorname{Cu}(N) \end{array}$$

Now consider the following diagram:

$$U_{0}(N) \times [0,1] \xrightarrow{H} U_{0}(N)$$

$$exp_{\nu}^{-1} \uparrow \qquad \qquad \downarrow exp_{\nu}$$

$$U \times [0,1] \xrightarrow{F} U \cong M - Cu(N)$$

The map F can be defined by taking the compositions

$$F = \exp_{v} \circ H \circ \exp_{v}^{-1}.$$

Equivariant cut locus theorem

Equivariant cut locus theorem

Equivariant cut locus theorem

Theorem (Basu, S. and Prasad, S.)

Equivariant cut locus theorem

Theorem (Basu, S. and Prasad, S.)

Let M be a complete,

Equivariant cut locus theorem

Theorem (Basu, S. and Prasad, S.)

Let M be a complete, closed

Equivariant cut locus theorem

Theorem (Basu, S. and Prasad, S.)

Let M be a complete, closed and connected Riemannian manifold

Equivariant cut locus theorem

Theorem (Basu, S. and Prasad, S.)

Let *M* be a complete, closed and connected Riemannian manifold and *G* be any compact Lie group which acts on *M* freely and isometrically.

Equivariant cut locus theorem

Theorem (Basu, S. and Prasad, S.)

Let *M* be a complete, closed and connected Riemannian manifold and *G* be any compact Lie group which acts on *M* freely and isometrically.

Theorem (Basu, S. and Prasad, S.)

Let M be a complete, closed and connected Riemannian manifold and G be any compact Lie group which acts on M freely and isometrically. Let N be any G-invariant closed submanifold of M,

Theorem (Basu, S. and Prasad, S.)

Let M be a complete, closed and connected Riemannian manifold and G be any compact Lie group which acts on M freely and isometrically. Let N be any G-invariant closed submanifold of M, then

 $\operatorname{Cu}\left(N/G\right)\cong\operatorname{Cu}(N)/G$

• We need to show that Cu(N) is *G*-invariant.

- We need to show that Cu(N) is *G*-invariant.
- Since the action is isometric, Se(N) is *G*-invariant.

- We need to show that Cu(N) is *G*-invariant.
- Since the action is isometric, Se(N) is *G*-invariant.

- We need to show that Cu(N) is *G*-invariant.
- Since the action is isometric, Se(N) is *G*-invariant.

- We need to show that Cu(N) is *G*-invariant.
- Since the action is isometric, Se(N) is *G*-invariant.

Now in order to show that $\overline{Se(N)}$ is *G*-invariant,

- We need to show that Cu(N) is *G*-invariant.
- Since the action is isometric, Se(N) is *G*-invariant.

Now in order to show that $\overline{Se(N)}$ is *G*-invariant, let $x \in \overline{Se(N)}$.

- We need to show that Cu(N) is *G*-invariant.
- Since the action is isometric, Se(N) is *G*-invariant.

Now in order to show that $\overline{Se(N)}$ is *G*-invariant, let $x \in \overline{Se(N)}$. So there exists a sequence $(x_n) \subset Se(N)$ such that $x_n \to x$,

- We need to show that Cu(N) is *G*-invariant.
- Since the action is isometric, Se(N) is *G*-invariant.

Now in order to show that Se(N) is *G*-invariant, let $x \in Se(N)$. So there exists a sequence $(x_n) \subset Se(N)$ such that $x_n \to x$, which implies $g \cdot x_n \to g \cdot x$.

- We need to show that Cu(N) is *G*-invariant.
- Since the action is isometric, Se(N) is *G*-invariant.

Now in order to show that Se(N) is *G*-invariant, let $x \in Se(N)$. So there exists a sequence $(x_n) \subset Se(N)$ such that $x_n \to x$, which implies $g \cdot x_n \to g \cdot x$. Hence, $g \cdot x \in \overline{Se(N)}$.

Idea of the proof

Idea of the proof

Idea of the proof

Problems in the approach

 π

Idea of the proof

Problems in the approach

• Why is $(\pi \circ \gamma)$ a distance minimal geodesic?

Problems in the approach

- Why is $(\pi \circ \gamma)$ a distance minimal geodesic?
- Why are $(\pi \circ \gamma)$ and $(\pi \circ \eta)$ distinct?

 π

p p n/G

Problems in the approach

- Why is $(\pi \circ \gamma)$ a distance minimal geodesic?
- Why are $(\pi \circ \gamma)$ and $(\pi \circ \eta)$ distinct?
- The same for the lifts.

Idea of the proof Connection on principal bundle

Connection on principal bundle

Definition (Ehresmann connection)

Definition (Ehresmann connection)

Given a smooth principal *G*-bundle $\pi : E \to B$,

Definition (Ehresmann connection)

Given a smooth principal *G*-bundle $\pi : E \to B$, an *Ehresmann connection* on *E* is a smooth subbundle \mathcal{H} of *TE*, called the *horizontal bundle* of the connection,

Definition (Ehresmann connection)

Given a smooth principal *G*-bundle $\pi : E \to B$, an *Ehresmann connection* on *E* is a smooth subbundle \mathscr{H} of *TE*, called the *horizontal bundle* of the connection, such that $TE = \mathscr{H} \oplus \mathscr{V}$,

Definition (Ehresmann connection)

Given a smooth principal *G*-bundle $\pi : E \to B$, an *Ehresmann connection* on *E* is a smooth subbundle \mathscr{H} of *TE*, called the *horizontal bundle* of the connection, such that $TE = \mathscr{H} \oplus \mathscr{V}$, where $\mathscr{V}_p = \ker (d\pi_p : T_pE \to T_{\pi(p)}B)$.

Definition (Ehresmann connection)

Given a smooth principal *G*-bundle $\pi : E \to B$, an *Ehresmann connection* on *E* is a smooth subbundle \mathscr{H} of *TE*, called the *horizontal bundle* of the connection, such that $TE = \mathscr{H} \oplus \mathscr{V}$, where $\mathscr{V}_p = \ker (d\pi_p : T_pE \to T_{\pi(p)}B)$.

• The bundle \mathscr{V} is called the *vertical bundle*

Definition (Ehresmann connection)

Given a smooth principal *G*-bundle $\pi : E \to B$, an *Ehresmann connection* on *E* is a smooth subbundle \mathscr{H} of *TE*, called the *horizontal bundle* of the connection, such that $TE = \mathscr{H} \oplus \mathscr{V}$, where $\mathscr{V}_p = \ker (d\pi_p : T_pE \to T_{\pi(p)}B)$.

• The bundle \mathscr{V} is called the *vertical bundle* and it is independent of the connection chosen.

Definition (Ehresmann connection)

Given a smooth principal *G*-bundle $\pi : E \to B$, an *Ehresmann connection* on *E* is a smooth subbundle \mathscr{H} of *TE*, called the *horizontal bundle* of the connection, such that $TE = \mathscr{H} \oplus \mathscr{V}$, where $\mathscr{V}_p = \ker (d\pi_p : T_pE \to T_{\pi(p)}B)$.

• The bundle \mathscr{V} is called the *vertical bundle* and it is independent of the connection chosen.

• $d\pi$ restricts to \mathscr{H}_p is an isomorphism on $T_{\pi(p)}B$.

Definition (Ehresmann connection)

Given a smooth principal *G*-bundle $\pi : E \to B$, an *Ehresmann connection* on *E* is a smooth subbundle \mathscr{H} of *TE*, called the *horizontal bundle* of the connection, such that $TE = \mathscr{H} \oplus \mathscr{V}$, where $\mathscr{V}_p = \ker (d\pi_p : T_pE \to T_{\pi(p)}B)$.

- The bundle \mathscr{V} is called the *vertical bundle* and it is independent of the connection chosen.
- $d\pi$ restricts to \mathscr{H}_p is an isomorphism on $T_{\pi(p)}B$.
- dg maps \mathscr{H}_p to $\mathscr{H}_{g \cdot p}$.

Definition (Horizontal lift)

Definition (Horizontal lift)

Let $\pi: E \to B$ be a fibre bundle with a connection \mathscr{H} .

Definition (Horizontal lift)

Let $\pi : E \to B$ be a fibre bundle with a connection \mathcal{H} . Let γ be a smooth curve in *B* through $\gamma(0) = b$.

Definition (Horizontal lift)

Let $\pi : E \to B$ be a fibre bundle with a connection \mathcal{H} . Let γ be a smooth curve in *B* through $\gamma(0) = b$. Let $e \in E$ be such that $\pi(e) = b$.

Definition (Horizontal lift)

Let $\pi : E \to B$ be a fibre bundle with a connection \mathscr{H} . Let γ be a smooth curve in *B* through $\gamma(0) = b$. Let $e \in E$ be such that $\pi(e) = b$. A *horizontal lift* of γ through *e* is a curve $\tilde{\gamma}$ in *E*

Definition (Horizontal lift)

Let $\pi : E \to B$ be a fibre bundle with a connection \mathscr{H} . Let γ be a smooth curve in *B* through $\gamma(0) = b$. Let $e \in E$ be such that $\pi(e) = b$. A *horizontal lift* of γ through *e* is a curve $\tilde{\gamma}$ in *E* such that $\pi \circ \tilde{\gamma} = \gamma$, $\tilde{\gamma}(0) = e$,

Definition (Horizontal lift)

Let $\pi : E \to B$ be a fibre bundle with a connection \mathscr{H} . Let γ be a smooth curve in *B* through $\gamma(0) = b$. Let $e \in E$ be such that $\pi(e) = b$. A *horizontal lift* of γ through *e* is a curve $\tilde{\gamma}$ in *E* such that $\pi \circ \tilde{\gamma} = \gamma$, $\tilde{\gamma}(0) = e$, and $\tilde{\gamma}'(t) \in \mathscr{H}_{\tilde{\gamma}(t)}$.

Definition (Horizontal lift)

Let $\pi : E \to B$ be a fibre bundle with a connection \mathscr{H} . Let γ be a smooth curve in *B* through $\gamma(0) = b$. Let $e \in E$ be such that $\pi(e) = b$. A *horizontal lift* of γ through *e* is a curve $\tilde{\gamma}$ in *E* such that $\pi \circ \tilde{\gamma} = \gamma$, $\tilde{\gamma}(0) = e$, and $\tilde{\gamma}'(t) \in \mathscr{H}_{\tilde{\gamma}(t)}$.

Proposition (Uniqueness of horizontal lift)

Definition (Horizontal lift)

Let $\pi : E \to B$ be a fibre bundle with a connection \mathscr{H} . Let γ be a smooth curve in *B* through $\gamma(0) = b$. Let $e \in E$ be such that $\pi(e) = b$. A *horizontal lift* of γ through *e* is a curve $\tilde{\gamma}$ in *E* such that $\pi \circ \tilde{\gamma} = \gamma$, $\tilde{\gamma}(0) = e$, and $\tilde{\gamma}'(t) \in \mathscr{H}_{\tilde{\gamma}(t)}$.

Proposition (Uniqueness of horizontal lift)

If $\gamma: [-1,1] \to B$ is a smooth curve such that $\gamma(0) = b$ and $e_0 \in \pi^{-1}(b)$,

Definition (Horizontal lift)

Let $\pi : E \to B$ be a fibre bundle with a connection \mathscr{H} . Let γ be a smooth curve in *B* through $\gamma(0) = b$. Let $e \in E$ be such that $\pi(e) = b$. A *horizontal lift* of γ through *e* is a curve $\tilde{\gamma}$ in *E* such that $\pi \circ \tilde{\gamma} = \gamma$, $\tilde{\gamma}(0) = e$, and $\tilde{\gamma}'(t) \in \mathscr{H}_{\tilde{\gamma}(t)}$.

Proposition (Uniqueness of horizontal lift)

If $\gamma: [-1,1] \to B$ is a smooth curve such that $\gamma(0) = b$ and $e_0 \in \pi^{-1}(b)$, then there is a unique horizontal lift $\tilde{\gamma}$ through $e_0 \in E$.

Geodesics on M and M/G

Geodesics on M and M/G

Geodesics on M and M/GGeodesic on M and M/G

Geodesics on M and M/G

Geodesic on M and M/G

Theorem

There is a one-to-one correspondence between the geodesics on M/G and geodesics on M which are horizontal.

Proof of the main theorem

Proof of the main theorem

$\operatorname{Se}(N)/G \subseteq \operatorname{Se}(N/G)$

 \tilde{p}

$\operatorname{Se}(N)/G \subseteq \operatorname{Se}(N/G)$

• $\tilde{\gamma}$ is a geodesic and $l(\tilde{\gamma}) = d(\tilde{p}, N)$

$\operatorname{Se}(N)/G \subseteq \operatorname{Se}(N/G)$

Lemma (O'Neil)

If $\tilde{\gamma}$ is a geodesic on E and $\tilde{\gamma}'(0) \in \mathscr{H}_{\tilde{\gamma}(0)}$, then for all t, $\tilde{\gamma}'(t) \in \mathscr{H}_{\tilde{\gamma}(t)}$ and $\pi \circ \tilde{\gamma}$ is a geodesic on B. Moreover, the length is preserved.

• $\tilde{\gamma}$ is a geodesic and $l(\tilde{\gamma}) = d(\tilde{p}, N)$ $\implies \tilde{\gamma}'(1) \in \mathscr{H}_{\tilde{\gamma}(1)}$

γ̃ is a geodesic and l(γ̃) = d(p̃,N)
⇒ γ̃'(1) ∈ ℋ_{γ̃(1)} ⇒ γ̃'(t) ∈ ℋ_{γ̃(t)}
⇒ γ̃ is a horizontal geodesic ⇒ γ
is a geodesic.

 $\operatorname{Se}(N)/G \subseteq \operatorname{Se}(N/G)$

• $\tilde{\gamma}$ is a geodesic and $l(\tilde{\gamma}) = d(\tilde{p}, N)$ $\implies \tilde{\gamma}'(1) \in \mathscr{H}_{\tilde{\gamma}(1)} \implies \tilde{\gamma}'(t) \in \mathscr{H}_{\tilde{\gamma}(t)}$ $\implies \tilde{\gamma}$ is a horizontal geodesic $\implies \gamma$ is a geodesic.

• If
$$\tilde{p} \in \operatorname{Se}(N)$$
,

- $\tilde{\gamma}$ is a geodesic and $l(\tilde{\gamma}) = d(\tilde{p}, N)$ $\implies \tilde{\gamma}'(1) \in \mathscr{H}_{\tilde{\gamma}(1)} \implies \tilde{\gamma}'(t) \in \mathscr{H}_{\tilde{\gamma}(t)}$ $\implies \tilde{\gamma}$ is a horizontal geodesic $\implies \gamma$ is a geodesic.
- If *p̃* ∈ Se(N), then there exists two N-geodesic, say *γ̃* and *η̃*.

$\operatorname{Se}(N)/G \subseteq \operatorname{Se}(N/G)$

• If $\tilde{p} \in \text{Se}(N)$, then there exists two *N*-geodesic, say $\tilde{\gamma}$ and $\tilde{\eta}$. Due to uniqueness of horizontal lift, both will project to distinct geodesic and lengths are same.

- $\tilde{\gamma}$ is a geodesic and $l(\tilde{\gamma}) = d(\tilde{p}, N)$ $\implies \tilde{\gamma}'(1) \in \mathscr{H}_{\tilde{\gamma}(1)} \implies \tilde{\gamma}'(t) \in \mathscr{H}_{\tilde{\gamma}(t)}$ $\implies \tilde{\gamma}$ is a horizontal geodesic $\implies \gamma$ is a geodesic.
- If $\tilde{p} \in \text{Se}(N)$, then there exists two *N*-geodesic, say $\tilde{\gamma}$ and $\tilde{\eta}$. Due to uniqueness of horizontal lift, both will project to distinct geodesic and lengths are same. Note that $\tilde{\gamma}$ is an *N*-geodesic implies γ will be an *N*/*G*-geodesic.

- $\tilde{\gamma}$ is a geodesic and $l(\tilde{\gamma}) = d(\tilde{p}, N)$ $\implies \tilde{\gamma}'(1) \in \mathscr{H}_{\tilde{\gamma}(1)} \implies \tilde{\gamma}'(t) \in \mathscr{H}_{\tilde{\gamma}(t)}$ $\implies \tilde{\gamma}$ is a horizontal geodesic $\implies \gamma$ is a geodesic.
- If $\tilde{p} \in \text{Se}(N)$, then there exists two *N*-geodesic, say $\tilde{\gamma}$ and $\tilde{\eta}$. Due to uniqueness of horizontal lift, both will project to distinct geodesic and lengths are same. Note that $\tilde{\gamma}$ is an *N*-geodesic implies γ will be an *N*/*G*-geodesic. Otherwise, $\exists \delta$ which is *N*/*G* geodesic joining *p* to *N*/*G*

- $\tilde{\gamma}$ is a geodesic and $l(\tilde{\gamma}) = d(\tilde{p}, N)$ $\implies \tilde{\gamma}'(1) \in \mathscr{H}_{\tilde{\gamma}(1)} \implies \tilde{\gamma}'(t) \in \mathscr{H}_{\tilde{\gamma}(t)}$ $\implies \tilde{\gamma}$ is a horizontal geodesic $\implies \gamma$ is a geodesic.
- If $\tilde{p} \in \text{Se}(N)$, then there exists two *N*-geodesic, say $\tilde{\gamma}$ and $\tilde{\eta}$. Due to uniqueness of horizontal lift, both will project to distinct geodesic and lengths are same. Note that $\tilde{\gamma}$ is an *N*-geodesic implies γ will be an *N*/*G*-geodesic. Otherwise, $\exists \delta$ which is *N*/*G* geodesic joining *p* to *N*/*G* which gives a horizontal lift $\tilde{\delta}$ whose length is strictly less than $\tilde{\gamma}$,

- $\tilde{\gamma}$ is a geodesic and $l(\tilde{\gamma}) = d(\tilde{p}, N)$ $\implies \tilde{\gamma}'(1) \in \mathscr{H}_{\tilde{\gamma}(1)} \implies \tilde{\gamma}'(t) \in \mathscr{H}_{\tilde{\gamma}(t)}$ $\implies \tilde{\gamma}$ is a horizontal geodesic $\implies \gamma$ is a geodesic.
- If $\tilde{p} \in \text{Se}(N)$, then there exists two *N*-geodesic, say $\tilde{\gamma}$ and $\tilde{\eta}$. Due to uniqueness of horizontal lift, both will project to distinct geodesic and lengths are same. Note that $\tilde{\gamma}$ is an *N*-geodesic implies γ will be an *N*/*G*-geodesic. Otherwise, $\exists \delta$ which is *N*/*G* geodesic joining *p* to *N*/*G* which gives a horizontal lift $\tilde{\delta}$ whose length is strictly less than $\tilde{\gamma}$, a contradiction.

Applications

Cut locus of projective planes

Let

$$\mathbb{S}_i^k = \{(x_0, \cdots, x_k, 0, \cdots, 0)\} \subseteq \mathbb{S}^n$$

Cut locus of projective planes

Let

$$\mathbb{S}_i^k = \{(x_0, \cdots, x_k, 0, \cdots, 0)\} \subseteq \mathbb{S}^n$$
$$\mathbb{S}_f^{n-k-1} = \{(0, \cdots, 0, x_{k+1}, x_{k+2}, \cdots, x_n)\} \subseteq \mathbb{S}^n$$

Let

$$\mathbb{S}_i^k = \{(x_0, \cdots, x_k, 0, \cdots, 0)\} \subseteq \mathbb{S}^n$$
$$\mathbb{S}_f^{n-k-1} = \{(0, \cdots, 0, x_{k+1}, x_{k+2}, \cdots, x_n)\} \subseteq \mathbb{S}^n$$

Then we have

Let

$$\mathbb{S}_i^k = \{(x_0, \cdots, x_k, 0, \cdots, 0)\} \subseteq \mathbb{S}^n$$
$$\mathbb{S}_f^{n-k-1} = \{(0, \cdots, 0, x_{k+1}, x_{k+2}, \cdots, x_n)\} \subseteq \mathbb{S}^n$$

Then we have

•
$$\operatorname{Cu}\left(\mathbb{S}_{i}^{k}\right) = \mathbb{S}_{f}^{n-k-1}$$

Let

$$\mathbb{S}_i^k = \{(x_0, \cdots, x_k, 0, \cdots, 0)\} \subseteq \mathbb{S}^n$$
$$\mathbb{S}_f^{n-k-1} = \{(0, \cdots, 0, x_{k+1}, x_{k+2}, \cdots, x_n)\} \subseteq \mathbb{S}^n$$

Then we have

• $\operatorname{Cu}(\mathbb{S}_i^k) = \mathbb{S}_f^{n-k-1}.$ • $\operatorname{Cu}(\mathbb{RP}_i^k) = \mathbb{RP}_f^{n-k-1}.$

Let

$$\mathbb{S}_i^k = \{(x_0, \cdots, x_k, 0, \cdots, 0)\} \subseteq \mathbb{S}^n$$
$$\mathbb{S}_f^{n-k-1} = \{(0, \cdots, 0, x_{k+1}, x_{k+2}, \cdots, x_n)\} \subseteq \mathbb{S}^n$$

Then we have

• $\operatorname{Cu}(\mathbb{S}_{i}^{k}) = \mathbb{S}_{f}^{n-k-1}$. • $\operatorname{Cu}(\mathbb{RP}_{i}^{k}) = \mathbb{RP}_{f}^{n-k-1}$. • $\operatorname{Cu}(\mathbb{CP}_{i}^{k}) = \mathbb{CP}_{f}^{n-k-1}$.

Applications Cut locus of complex hypersurface

Applications Cut locus of complex hypersurface

• Define the set
$$X(d) = \left\{ [\mathbf{z}] \in \mathbb{CP}^n : \sum_{i=0}^n z_i^d = 0 \right\}.$$

Cut locus of complex hypersurface

• Define the set
$$X(d) = \left\{ [\mathbf{z}] \in \mathbb{CP}^n : \sum_{i=0}^n z_i^d = 0 \right\}.$$

• Since the partial derivatives $\frac{\partial f}{\partial z_j}$ do not vanish simultaneously on $\mathbb{C}^{n+1} - \{0\}$, the hypersurface is nonsingular.

Cut locus of complex hypersurface

• Define the set
$$X(d) = \left\{ [\mathbf{z}] \in \mathbb{CP}^n : \sum_{i=0}^n z_i^d = 0 \right\}.$$

- Since the partial derivatives $\frac{\partial f}{\partial z_j}$ do not vanish simultaneously on $\mathbb{C}^{n+1} \{0\}$, the hypersurface is nonsingular.
- The above hypersurface is well studied by Kulkarni and Wood [2].

Cut locus of complex hypersurface

• Define the set
$$X(d) = \left\{ [\mathbf{z}] \in \mathbb{CP}^n : \sum_{i=0}^n z_i^d = 0 \right\}.$$

- Since the partial derivatives $\frac{\partial f}{\partial z_j}$ do not vanish simultaneously on $\mathbb{C}^{n+1} \{0\}$, the hypersurface is nonsingular.
- The above hypersurface is well studied by Kulkarni and Wood [2].

• Define
$$\tilde{X}(d) = \left\{ \mathbf{z} \in \mathbb{S}^{2n+1} : \sum_{i=0}^{n} z_i^d = 0 \right\}.$$

Cut locus of complex hypersurface

• Define the set
$$X(d) = \left\{ [\mathbf{z}] \in \mathbb{CP}^n : \sum_{i=0}^n z_i^d = 0 \right\}.$$

- Since the partial derivatives $\frac{\partial f}{\partial z_j}$ do not vanish simultaneously on $\mathbb{C}^{n+1} \{0\}$, the hypersurface is nonsingular.
- The above hypersurface is well studied by Kulkarni and Wood [2].

• Define
$$\tilde{X}(d) = \left\{ \mathbf{z} \in \mathbb{S}^{2n+1} : \sum_{i=0}^{n} z_i^d = 0 \right\}.$$

Theorem (Basu, S. and Prasad, S.)

The cut locus of
$$ilde{X}(d) \subseteq \mathbb{S}^{2n+1}$$
 is $\mathbb{Z}_d^{\star(n+1)} imes_{\mathbb{Z}_d} \mathbb{S}^1$.

S. BASU AND S. PRASAD, A connection between cut locus, Thom space and Morse-Bott functions. https://arxiv.org/abs/2011.02972 accepted in Algebraic & Geometric Topology.

R. S. KULKARNI AND J. W. WOOD, *Topology of nonsingular complex hypersurfaces*, Adv. in Math., 35 (1980), pp. 239–263.

Thank you for your attention!