Cut Locus of Submanifolds: A Geometric Viewpoint

Seminar GANIT

IIT Gandhinagar

Sachchidanand Prasad

Indian Institute of Science Education and Research Kolkata
10th October 2022

Outline of the talk

(1) Background
(2) Deformation of complement of the cut locus
(3) Equivariant cut locus theorem
(4) Idea of the proof
(5) Geodesics on M and M / G
(6) Proof of the main theorem
(7) Applications

Background

Cut locus of a point

Definition (Cut locus of a point)

Cut locus of a point

Definition (Cut locus of a point)
Let M be a Riemannian manifold

Cut locus of a point

Definition (Cut locus of a point)
Let M be a Riemannian manifold and p be any point in M.

Cut locus of a point

Definition (Cut locus of a point)
Let M be a Riemannian manifold and p be any point in M. If $\mathrm{Cu}(p)$ denotes the cut locus of p,

Cut locus of a point

Definition (Cut locus of a point)

Let M be a Riemannian manifold and p be any point in M. If $\mathrm{Cu}(p)$ denotes the cut locus of p, then we say that $q \in \mathrm{Cu}(p)$ if there exists a distance minimal geodesic joining p to q

Cut locus of a point

Definition (Cut locus of a point)

Let M be a Riemannian manifold and p be any point in M. If $\mathrm{Cu}(p)$ denotes the cut locus of p, then we say that $q \in \mathrm{Cu}(p)$ if there exists a distance minimal geodesic joining p to q such that any extension of it beyond q is not a distance minimal geodesic.
0
0
0

Examples: \mathbb{S}^{2}

Examples: Torus

Cut locus of a submanifold

Definition (Distance minimal geodesic)

Cut locus of a submanifold

Definition (Distance minimal geodesic)

A geodesic γ is called a distance minimal geodesic joining N to p

Cut locus of a submanifold

Definition (Distance minimal geodesic)

A geodesic γ is called a distance minimal geodesic joining N to p if there exists $q \in N$

Cut locus of a submanifold

Definition (Distance minimal geodesic)

A geodesic γ is called a distance minimal geodesic joining N to p if there exists $q \in N$ such that γ is a minimal geodesic joining q to p

Cut locus of a submanifold

Definition (Distance minimal geodesic)

A geodesic γ is called a distance minimal geodesic joining N to p if there exists $q \in N$ such that γ is a minimal geodesic joining q to p and $l(\gamma)=d(p, N)$.

Cut locus of a submanifold

Definition (Distance minimal geodesic)

A geodesic γ is called a distance minimal geodesic joining N to p if there exists $q \in N$ such that γ is a minimal geodesic joining q to p and $l(\gamma)=d(p, N)$. We will call such geodesics as N-geodesics.

Cut locus of a submanifold

Definition (Distance minimal geodesic)

A geodesic γ is called a distance minimal geodesic joining N to p if there exists $q \in N$ such that γ is a minimal geodesic joining q to p and $l(\gamma)=d(p, N)$. We will call such geodesics as N-geodesics.

Definition (Cut locus of a submanifold)

Cut locus of a submanifold

Definition (Distance minimal geodesic)

A geodesic γ is called a distance minimal geodesic joining N to p if there exists $q \in N$ such that γ is a minimal geodesic joining q to p and $l(\gamma)=d(p, N)$. We will call such geodesics as N-geodesics.

Definition (Cut locus of a submanifold)
Let M be a Riemannian manifold

Cut locus of a submanifold

Definition (Distance minimal geodesic)

A geodesic γ is called a distance minimal geodesic joining N to p if there exists $q \in N$ such that γ is a minimal geodesic joining q to p and $l(\gamma)=d(p, N)$. We will call such geodesics as N-geodesics.

Definition (Cut locus of a submanifold)
Let M be a Riemannian manifold and N be any non-empty subset of M.

Cut locus of a submanifold

Definition (Distance minimal geodesic)

A geodesic γ is called a distance minimal geodesic joining N to p if there exists $q \in N$ such that γ is a minimal geodesic joining q to p and $l(\gamma)=d(p, N)$. We will call such geodesics as N-geodesics.

Definition (Cut locus of a submanifold)
Let M be a Riemannian manifold and N be any non-empty subset of M. If $\mathrm{Cu}(N)$ denotes the cut locus of N,

Cut locus of a submanifold

Definition (Distance minimal geodesic)

A geodesic γ is called a distance minimal geodesic joining N to p if there exists $q \in N$ such that γ is a minimal geodesic joining q to p and $l(\gamma)=d(p, N)$. We will call such geodesics as N-geodesics.

Definition (Cut locus of a submanifold)

Let M be a Riemannian manifold and N be any non-empty subset of M. If $\mathrm{Cu}(N)$ denotes the cut locus of N, then we say that $q \in \mathrm{Cu}(N)$ if there exists an N-geodesic joining N to q

Cut locus of a submanifold

Definition (Distance minimal geodesic)

A geodesic γ is called a distance minimal geodesic joining N to p if there exists $q \in N$ such that γ is a minimal geodesic joining q to p and $l(\gamma)=d(p, N)$. We will call such geodesics as N-geodesics.

Definition (Cut locus of a submanifold)

Let M be a Riemannian manifold and N be any non-empty subset of M. If $\mathrm{Cu}(N)$ denotes the cut locus of N, then we say that $q \in \mathrm{Cu}(N)$ if there exists an N-geodesic joining N to q such that any extension of it beyond q is not a distance minimal geodesic.
0

An Example

An Example

0

An Example

Separating set of N

Definition (Separating set)

Let N be a subset of a Riemannian manifold M.

Separating set of N

Definition (Separating set)

Let N be a subset of a Riemannian manifold M. The separating set, denoted by $\operatorname{Se}(N)$,

Separating set of N

Definition (Separating set)

Let N be a subset of a Riemannian manifold M. The separating set, denoted by $\operatorname{Se}(N)$, consists of all points $q \in M$

Definition (Separating set)

Let N be a subset of a Riemannian manifold M. The separating set, denoted by $\operatorname{Se}(N)$, consists of all points $q \in M$ such that at least two distance minimal geodesics from N to q exist.

Theorem (Basu, S. and Prasad, S. [1])
For a complete Riemannian manifold M and a compact submanifold N of M,

$$
\overline{\operatorname{Se}(N)}=\operatorname{Cu}(N)
$$

Deformation of complement of the cut locus

Theorem (Basu, S. and Prasad, S. [1])

Theorem (Basu, S. and Prasad, S. [1])
Let M be a connected,

Let M be a connected, complete Riemannian manifold

Theorem (Basu, S. and Prasad, S. [1])

Let M be a connected, complete Riemannian manifold and N be an embedded submanifold of M.

Theorem (Basu, S. and Prasad, S. [1])

Let M be a connected, complete Riemannian manifold and N be an embedded submanifold of M. Suppose two N-geodesics exists joining N to $q \in M$.

Theorem (Basu, S. and Prasad, S. [1])

Let M be a connected, complete Riemannian manifold and N be an embedded submanifold of M. Suppose two N-geodesics exists joining N to $q \in M$. Then $d^{2}(N, \cdot): M \rightarrow \mathbb{R}$ has no directional derivative at q

Theorem (Basu, S. and Prasad, S. [1])

Let M be a connected, complete Riemannian manifold and N be an embedded submanifold of M. Suppose two N-geodesics exists joining N to $q \in M$. Then $d^{2}(N, \cdot): M \rightarrow \mathbb{R}$ has no directional derivative at q for vectors in direction of those two N-geodesic.

Theorem (Basu, S. and Prasad, S. [1])

Let M be a connected, complete Riemannian manifold and N be an embedded submanifold of M. Suppose two N-geodesics exists joining N to $q \in M$. Then $d^{2}(N, \cdot): M \rightarrow \mathbb{R}$ has no directional derivative at q for vectors in direction of those two N-geodesic.

Theorem (Basu, S. and Prasad, S. [1])

Let M be a complete Riemannian manifold

Theorem (Basu, S. and Prasad, S. [1])

Let M be a connected, complete Riemannian manifold and N be an embedded submanifold of M. Suppose two N-geodesics exists joining N to $q \in M$. Then $d^{2}(N, \cdot): M \rightarrow \mathbb{R}$ has no directional derivative at q for vectors in direction of those two N-geodesic.

Theorem (Basu, S. and Prasad, S. [1])

Let M be a complete Riemannian manifold and N be compact submanifold of M.

Theorem (Basu, S. and Prasad, S. [1])

Let M be a connected, complete Riemannian manifold and N be an embedded submanifold of M. Suppose two N-geodesics exists joining N to $q \in M$. Then $d^{2}(N, \cdot): M \rightarrow \mathbb{R}$ has no directional derivative at q for vectors in direction of those two N-geodesic.

Theorem (Basu, S. and Prasad, S. [1])

Let M be a complete Riemannian manifold and N be compact submanifold of M. Then N is a deformation retract of $M-\mathrm{Cu}(N)$.

Theorem (Basu, S. and Prasad, S. [1])

Let M be a connected, complete Riemannian manifold and N be an embedded submanifold of M. Suppose two N-geodesics exists joining N to $q \in M$. Then $d^{2}(N, \cdot): M \rightarrow \mathbb{R}$ has no directional derivative at q for vectors in direction of those two N-geodesic.

Theorem (Basu, S. and Prasad, S. [1])

Let M be a complete Riemannian manifold and N be compact submanifold of M. Then N is a deformation retract of $M-\mathrm{Cu}(N)$.

Theorem (Basu, S. and Prasad, S. [1])

The cut locus $\mathrm{Cu}(N)$ is a strong deformation retract of $M-N$.

Some results

Theorem (Basu, S. and Prasad, S. [1])

Let M be a connected, complete Riemannian manifold and N be an embedded submanifold of M. Suppose two N-geodesics exists joining N to $q \in M$. Then $d^{2}(N, \cdot): M \rightarrow \mathbb{R}$ has no directional derivative at q for vectors in direction of those two N-geodesic.

Theorem (Basu, S. and Prasad, S. [1])

Let M be a complete Riemannian manifold and N be compact submanifold of M. Then N is a deformation retract of $M-\mathrm{Cu}(N)$.

Theorem (Basu, S. and Prasad, S. [1])

The cut locus $\mathrm{Cu}(N)$ is a strong deformation retract of $M-N$. In particular, $(M, \mathrm{Cu}(N))$ is a good pair

Some results

Theorem (Basu, S. and Prasad, S. [1])

Let M be a connected, complete Riemannian manifold and N be an embedded submanifold of M. Suppose two N-geodesics exists joining N to $q \in M$. Then $d^{2}(N, \cdot): M \rightarrow \mathbb{R}$ has no directional derivative at q for vectors in direction of those two N-geodesic.

Theorem (Basu, S. and Prasad, S. [1])

Let M be a complete Riemannian manifold and N be compact submanifold of M. Then N is a deformation retract of $M-\mathrm{Cu}(N)$.

Theorem (Basu, S. and Prasad, S. [1])

The cut locus $\mathrm{Cu}(N)$ is a strong deformation retract of $M-N$. In particular, $(M, \mathrm{Cu}(N))$ is a good pair and the number of path components of $\mathrm{Cu}(N)$ equals that of $M-N$.

Outline of the proof of the deformation

Define

$$
\mathbf{s}: S(v) \rightarrow[0, \infty], \mathbf{s}(v):=\sup \left\{t \in[0, \infty)\left|\gamma_{v}\right|_{[0, t]} \text { is an } N \text {-geodesic }\right\},
$$

where $S(v)$ is the unit normal bundle of N and $[0, \infty]$ is the one-point compactification of $[0, \infty)$.

Outline of the proof of the deformation

Define

$$
\mathbf{s}: S(v) \rightarrow[0, \infty], \mathbf{s}(v):=\sup \left\{t \in[0, \infty)\left|\gamma_{v}\right|_{[0, t]} \text { is an } N \text {-geodesic }\right\},
$$

where $S(v)$ is the unit normal bundle of N and $[0, \infty]$ is the one-point compactification of $[0, \infty)$. The map s is continuous

Outline of the proof of the deformation

Define

$$
\mathbf{s}: S(v) \rightarrow[0, \infty], \mathbf{s}(v):=\sup \left\{t \in[0, \infty)\left|\gamma_{v}\right|_{[0, t]} \text { is an } N \text {-geodesic }\right\},
$$

where $S(v)$ is the unit normal bundle of N and $[0, \infty]$ is the one-point compactification of $[0, \infty)$. The map s is continuous and is finite if M is compact.

Outline of the proof of the deformation

Define

$$
\mathbf{s}: S(v) \rightarrow[0, \infty], \mathbf{s}(v):=\sup \left\{t \in[0, \infty)\left|\gamma_{v}\right|_{[0, t]} \text { is an } N \text {-geodesic }\right\}
$$

where $S(v)$ is the unit normal bundle of N and $[0, \infty]$ is the one-point compactification of $[0, \infty)$. The map s is continuous and is finite if M is compact. Note that the cut locus is

$$
\mathrm{Cu}(N)=\exp _{v}\{\mathbf{s}(v) v: v \in S(v)\}
$$

Outline of the proof of the deformation

Define

$$
\mathbf{s}: S(v) \rightarrow[0, \infty], \mathbf{s}(v):=\sup \left\{t \in[0, \infty)\left|\gamma_{v}\right|_{[0, t]} \text { is an } N \text {-geodesic }\right\},
$$

where $S(v)$ is the unit normal bundle of N and $[0, \infty]$ is the one-point compactification of $[0, \infty)$. The map s is continuous and is finite if M is compact. Note that the cut locus is

$$
\mathrm{Cu}(N)=\exp _{v}\{\mathbf{s}(v) v: v \in S(v)\}
$$

where $\exp _{v}: v \rightarrow M, \exp _{v}(p, v):=\exp _{p}(v)$.

Outline of the proof of the deformation

Define

$$
\mathbf{s}: S(v) \rightarrow[0, \infty], \mathbf{s}(v):=\sup \left\{t \in[0, \infty)\left|\gamma_{v}\right|_{[0, t]} \text { is an } N \text {-geodesic }\right\},
$$

where $S(v)$ is the unit normal bundle of N and $[0, \infty]$ is the one-point compactification of $[0, \infty)$. The map s is continuous and is finite if M is compact. Note that the cut locus is

$$
\mathrm{Cu}(N)=\exp _{v}\{\mathbf{s}(v) v: v \in S(v)\}
$$

where $\exp _{v}: v \rightarrow M, \exp _{v}(p, v):=\exp _{p}(v)$. Define an open neighborhood $U_{0}(N)$ of the zero section in the normal bundle as

$$
U_{0}(N):=\{a v: 0 \leq a<\mathbf{s}(v), v \in S(v)\} .
$$

Outline of the proof of the deformation

Define

$$
\mathbf{s}: S(v) \rightarrow[0, \infty], \mathbf{s}(v):=\sup \left\{t \in[0, \infty)\left|\gamma_{v}\right|_{[0, t]} \text { is an } N \text {-geodesic }\right\}
$$

where $S(v)$ is the unit normal bundle of N and $[0, \infty]$ is the one-point compactification of $[0, \infty)$. The map s is continuous and is finite if M is compact. Note that the cut locus is

$$
\mathrm{Cu}(N)=\exp _{v}\{\mathbf{s}(v) v: v \in S(v)\}
$$

where $\exp _{v}: v \rightarrow M, \exp _{v}(p, v):=\exp _{p}(v)$. Define an open neighborhood $U_{0}(N)$ of the zero section in the normal bundle as

$$
U_{0}(N):=\{a v: 0 \leq a<\mathbf{s}(v), v \in S(v)\} .
$$

Note that $\exp _{v}$ is a diffeomorphism on $U_{0}(N)$ and set $U(N)=\exp _{v}\left(U_{0}(N)\right)=M-\mathrm{Cu}(N)$.

The space $U_{0}(N)$ deforms to the zero section on the normal bundle.

The space $U_{0}(N)$ deforms to the zero section on the normal bundle.

$$
H: U_{0}(N) \times[0,1] \rightarrow U_{0}(N),((p, a v), t) \mapsto(p, t a v) .
$$

Now consider the following diagram:

$$
\begin{gathered}
U_{0}(N) \times[0,1] \xrightarrow{H} U_{0}(N) \\
\exp _{v}^{-1} \uparrow \\
U \times[0,1] \xrightarrow{\exp _{v}} \\
\quad U \cong M-\mathrm{Cu}(N)
\end{gathered}
$$

Now consider the following diagram:

$$
\begin{gathered}
U_{0}(N) \times[0,1] \xrightarrow{H} U_{0}(N) \\
\exp _{v}^{-1} \uparrow \\
U \times[0,1] \xrightarrow{\exp _{v}} \\
\quad U \cong M-\mathrm{Cu}(N)
\end{gathered}
$$

The map F can be defined by taking the compositions

$$
F=\exp _{v} \circ H \circ \exp _{v}^{-1}
$$

Equivariant cut locus theorem

Theorem (Basu, S. and Prasad, S.)

Theorem (Basu, S. and Prasad, S.)
Let M be a complete,

Theorem (Basu, S. and Prasad, S.)
Let M be a complete, closed

Theorem (Basu, S. and Prasad, S.)
Let M be a complete, closed and connected Riemannian manifold

Theorem (Basu, S. and Prasad, S.)
Let M be a complete, closed and connected Riemannian manifold and G be any compact Lie group which acts on M freely and isometrically.

Theorem (Basu, S. and Prasad, S.)
Let M be a complete, closed and connected Riemannian manifold and G be any compact Lie group which acts on M freely and isometrically.

Theorem (Basu, S. and Prasad, S.)
Let M be a complete, closed and connected Riemannian manifold and G be any compact Lie group which acts on M freely and isometrically. Let N be any G-invariant closed submanifold of M,

Theorem (Basu, S. and Prasad, S.)
Let M be a complete, closed and connected Riemannian manifold and G be any compact Lie group which acts on M freely and isometrically. Let N be any G-invariant closed submanifold of M, then

$$
\mathrm{Cu}(N / G) \cong \mathrm{Cu}(N) / G
$$

Cut locus is G invariant

- We need to show that $\mathrm{Cu}(N)$ is G-invariant.

Cut locus is G invariant

- We need to show that $\mathrm{Cu}(N)$ is G-invariant.
- Since the action is isometric, $\operatorname{Se}(N)$ is G-invariant.

Cut locus is G invariant

- We need to show that $\mathrm{Cu}(N)$ is G-invariant.
- Since the action is isometric, $\operatorname{Se}(N)$ is G-invariant.

Cut locus is G invariant

- We need to show that $\mathrm{Cu}(N)$ is G-invariant.
- Since the action is isometric, $\operatorname{Se}(N)$ is G-invariant.

Cut locus is G invariant

- We need to show that $\mathrm{Cu}(N)$ is G-invariant.
- Since the action is isometric, $\operatorname{Se}(N)$ is G-invariant.

Now in order to show that $\overline{\operatorname{Se}(N)}$ is G-invariant,

Cut locus is G invariant

- We need to show that $\mathrm{Cu}(N)$ is G-invariant.
- Since the action is isometric, $\operatorname{Se}(N)$ is G-invariant.

Now in order to show that $\overline{\operatorname{Se}(N)}$ is G-invariant, let $x \in \overline{\operatorname{Se}(N)}$.

Cut locus is G invariant

- We need to show that $\mathrm{Cu}(N)$ is G-invariant.
- Since the action is isometric, $\operatorname{Se}(N)$ is G-invariant.

Now in order to show that $\overline{\operatorname{Se}(N)}$ is G-invariant, let $x \in \overline{\operatorname{Se}(N)}$. So there exists a sequence $\left(x_{n}\right) \subset \operatorname{Se}(N)$ such that $x_{n} \rightarrow x$,

Cut locus is G invariant

- We need to show that $\mathrm{Cu}(N)$ is G-invariant.
- Since the action is isometric, $\operatorname{Se}(N)$ is G-invariant.

Now in order to show that $\overline{\operatorname{Se}(N)}$ is G-invariant, let $x \in \overline{\operatorname{Se}(N)}$. So there exists a sequence $\left(x_{n}\right) \subset \operatorname{Se}(N)$ such that $x_{n} \rightarrow x$, which implies $g \cdot x_{n} \rightarrow g \cdot x$.

Cut locus is G invariant

- We need to show that $\mathrm{Cu}(N)$ is G-invariant.
- Since the action is isometric, $\operatorname{Se}(N)$ is G-invariant.

Now in order to show that $\overline{\operatorname{Se}(N)}$ is G-invariant, let $x \in \overline{\operatorname{Se}(N)}$. So there exists a sequence $\left(x_{n}\right) \subset \operatorname{Se}(N)$ such that $x_{n} \rightarrow x$, which implies $g \cdot x_{n} \rightarrow g \cdot x$. Hence, $g \cdot x \in \overline{\operatorname{Se}(N)}$.

Idea of the proof

Idea of the proof
M

p.

M / G

Idea of the proof

M

p •

Idea of the proof

M / G
$\tilde{p} \bullet$

Idea of the proof

M

Idea of the proof

Problems in the approach

Idea of the proof

Problems in the approach

(1) Why is $(\pi \circ \gamma)$ a distance minimal geodesic?

Idea of the proof

Problems in the approach

© Why is $(\pi \circ \gamma)$ a distance minimal geodesic?
(2) Why are $(\pi \circ \gamma)$ and $(\pi \circ \eta)$ distinct?

Problems in the approach

© Why is $(\pi \circ \gamma)$ a distance minimal geodesic?
(2) Why are $(\pi \circ \gamma)$ and $(\pi \circ \eta)$ distinct?
(3) The same for the lifts.

Connection on principal bundle

Definition (Ehresmann connection)

Connection on principal bundle

Definition (Ehresmann connection)
Given a smooth principal G-bundle $\pi: E \rightarrow B$,

Connection on principal bundle

Definition (Ehresmann connection)

Given a smooth principal G-bundle $\pi: E \rightarrow B$, an Ehresmann connection on E is a smooth subbundle \mathscr{H} of $T E$, called the horizontal bundle of the connection,

Definition (Ehresmann connection)

Given a smooth principal G-bundle $\pi: E \rightarrow B$, an Ehresmann connection on E is a smooth subbundle \mathscr{H} of $T E$, called the horizontal bundle of the connection, such that $T E=\mathscr{H} \oplus \mathscr{V}$,

Connection on principal bundle

Definition (Ehresmann connection)

Given a smooth principal G-bundle $\pi: E \rightarrow B$, an Ehresmann connection on E is a smooth subbundle \mathscr{H} of $T E$, called the horizontal bundle of the connection, such that $T E=\mathscr{H} \oplus \mathscr{V}$, where $\mathscr{V}_{p}=\operatorname{ker}\left(d \pi_{p}: T_{p} E \rightarrow T_{\pi(p)} B\right)$.

Definition (Ehresmann connection)

Given a smooth principal G-bundle $\pi: E \rightarrow B$, an Ehresmann connection on E is a smooth subbundle \mathscr{H} of $T E$, called the horizontal bundle of the connection, such that $T E=\mathscr{H} \oplus \mathscr{V}$, where $\mathscr{V}_{p}=\operatorname{ker}\left(d \pi_{p}: T_{p} E \rightarrow T_{\pi(p)} B\right)$.

- The bundle \mathscr{V} is called the vertical bundle

Definition (Ehresmann connection)

Given a smooth principal G-bundle $\pi: E \rightarrow B$, an Ehresmann connection on E is a smooth subbundle \mathscr{H} of $T E$, called the horizontal bundle of the connection, such that $T E=\mathscr{H} \oplus \mathscr{V}$, where $\mathscr{V}_{p}=\operatorname{ker}\left(d \pi_{p}: T_{p} E \rightarrow T_{\pi(p)} B\right)$.

- The bundle \mathscr{V} is called the vertical bundle and it is independent of the connection chosen.

Connection on principal bundle

Definition (Ehresmann connection)

Given a smooth principal G-bundle $\pi: E \rightarrow B$, an Ehresmann connection on E is a smooth subbundle \mathscr{H} of $T E$, called the horizontal bundle of the connection, such that $T E=\mathscr{H} \oplus \mathscr{V}$, where $\mathscr{V}_{p}=\operatorname{ker}\left(d \pi_{p}: T_{p} E \rightarrow T_{\pi(p)} B\right)$.

- The bundle \mathscr{V} is called the vertical bundle and it is independent of the connection chosen.
- $d \pi$ restricts to \mathscr{H}_{p} is an isomorphism on $T_{\pi(p)} B$.

Connection on principal bundle

Definition (Ehresmann connection)

Given a smooth principal G-bundle $\pi: E \rightarrow B$, an Ehresmann connection on E is a smooth subbundle \mathscr{H} of $T E$, called the horizontal bundle of the connection, such that $T E=\mathscr{H} \oplus \mathscr{V}$, where $\mathscr{V}_{p}=\operatorname{ker}\left(d \pi_{p}: T_{p} E \rightarrow T_{\pi(p)} B\right)$.

- The bundle \mathscr{V} is called the vertical bundle and it is independent of the connection chosen.
- $d \pi$ restricts to \mathscr{H}_{p} is an isomorphism on $T_{\pi(p)} B$.
- $d g$ maps \mathscr{H}_{p} to $\mathscr{H}_{g . p}$.

Horizontal Lift

Definition (Horizontal lift)

Horizontal Lift

Definition (Horizontal lift)

Let $\pi: E \rightarrow B$ be a fibre bundle with a connection \mathscr{H}.

Horizontal Lift

Definition (Horizontal lift)

Let $\pi: E \rightarrow B$ be a fibre bundle with a connection \mathscr{H}. Let γ be a smooth curve in B through $\gamma(0)=b$.

Horizontal Lift

Definition (Horizontal lift)

Let $\pi: E \rightarrow B$ be a fibre bundle with a connection \mathscr{H}. Let γ be a smooth curve in B through $\gamma(0)=b$. Let $e \in E$ be such that $\pi(e)=b$.

Horizontal Lift

Definition (Horizontal lift)

Let $\pi: E \rightarrow B$ be a fibre bundle with a connection \mathscr{H}. Let γ be a smooth curve in B through $\gamma(0)=b$. Let $e \in E$ be such that $\pi(e)=b$. A horizontal lift of γ through e is a curve $\tilde{\gamma}$ in E

Horizontal Lift

Definition (Horizontal lift)

Let $\pi: E \rightarrow B$ be a fibre bundle with a connection \mathscr{H}. Let γ be a smooth curve in B through $\gamma(0)=b$. Let $e \in E$ be such that $\pi(e)=b$. A horizontal lift of γ through e is a curve $\tilde{\gamma}$ in E such that $\pi \circ \tilde{\gamma}=\gamma, \tilde{\gamma}(0)=e$,

Horizontal Lift

Definition (Horizontal lift)

Let $\pi: E \rightarrow B$ be a fibre bundle with a connection \mathscr{H}. Let γ be a smooth curve in B through $\gamma(0)=b$. Let $e \in E$ be such that $\pi(e)=b$. A horizontal lift of γ through e is a curve $\tilde{\gamma}$ in E such that $\pi \circ \tilde{\gamma}=\gamma, \tilde{\gamma}(0)=e$, and $\tilde{\gamma}^{\prime}(t) \in \mathscr{H}_{\hat{\gamma}(t)}$.

Horizontal Lift

Definition (Horizontal lift)

Let $\pi: E \rightarrow B$ be a fibre bundle with a connection \mathscr{H}. Let γ be a smooth curve in B through $\gamma(0)=b$. Let $e \in E$ be such that $\pi(e)=b$. A horizontal lift of γ through e is a curve $\tilde{\gamma}$ in E such that $\pi \circ \tilde{\gamma}=\gamma, \tilde{\gamma}(0)=e$, and $\tilde{\gamma}^{\prime}(t) \in \mathscr{H}_{\tilde{\gamma}(t)}$.

Proposition (Uniqueness of horizontal lift)

Horizontal Lift

Definition (Horizontal lift)

Let $\pi: E \rightarrow B$ be a fibre bundle with a connection \mathscr{H}. Let γ be a smooth curve in B through $\gamma(0)=b$. Let $e \in E$ be such that $\pi(e)=b$. A horizontal lift of γ through e is a curve $\tilde{\gamma}$ in E such that $\pi \circ \tilde{\gamma}=\gamma, \tilde{\gamma}(0)=e$, and $\tilde{\gamma}^{\prime}(t) \in \mathscr{H}_{\hat{\gamma}(t)}$.

Proposition (Uniqueness of horizontal lift)

If $\gamma:[-1,1] \rightarrow B$ is a smooth curve such that $\gamma(0)=b$ and $e_{0} \in \pi^{-1}(b)$,

Horizontal Lift

Definition (Horizontal lift)

Let $\pi: E \rightarrow B$ be a fibre bundle with a connection \mathscr{H}. Let γ be a smooth curve in B through $\gamma(0)=b$. Let $e \in E$ be such that $\pi(e)=b$. A horizontal lift of γ through e is a curve $\tilde{\gamma}$ in E such that $\pi \circ \tilde{\gamma}=\gamma, \tilde{\gamma}(0)=e$, and $\tilde{\gamma}^{\prime}(t) \in \mathscr{H}_{\tilde{\gamma}(t)}$.

Proposition (Uniqueness of horizontal lift)

If $\gamma:[-1,1] \rightarrow B$ is a smooth curve such that $\gamma(0)=b$ and $e_{0} \in \pi^{-1}(b)$, then there is a unique horizontal lift $\tilde{\gamma}$ through $e_{0} \in E$.

Geodesics on M and M / G

Geodesic on M and M / G

Geodesic on M and M / G

Theorem

There is a one-to-one correspondence between the geodesics on M / G and geodesics on M which are horizontal.

Proof of the main theorem

Proof of the main theorem

$\operatorname{Se}(N) / G \subseteq \operatorname{Se}(N / G)$

\tilde{p}.

$\downarrow \pi$

$\operatorname{Se}(N) / G \subseteq \operatorname{Se}(N / G)$

$\tilde{p}_{n}^{\tilde{p}_{0}} \overbrace{}^{\tilde{\gamma}} /\left(\|^{N}\right.$

$\downarrow \pi$

- $\tilde{\gamma}$ is a geodesic and $l(\tilde{\gamma})=d(\tilde{p}, N)$

$\downarrow \pi$

$\operatorname{Se}(N) / G \subseteq \operatorname{Se}(N / G)$

- $\tilde{\gamma}$ is a geodesic and $l(\tilde{\gamma})=d(\tilde{p}, N)$ $\Longrightarrow \tilde{\gamma}^{\prime}(1) \in \mathscr{H}_{\tilde{\gamma}(1)}$

$\downarrow \pi$

N / G

Lemma (O'Neil)

If $\tilde{\gamma}$ is a geodesic on E and $\tilde{\gamma}^{\prime}(0) \in \mathscr{H}_{\tilde{\gamma}(0)}$, then for all t, $\tilde{\gamma}^{\prime}(t) \in \mathscr{H}_{\tilde{\gamma}(t)}$ and $\pi \circ \tilde{\gamma}$ is a geodesic on B. Moreover, the length is preserved.

- $\tilde{\gamma}$ is a geodesic and $l(\tilde{\gamma})=d(\tilde{p}, N)$ $\Longrightarrow \tilde{\gamma}^{\prime}(1) \in \mathscr{H}_{\tilde{\gamma}(1)}$

$\operatorname{Se}(N) / G \subseteq \operatorname{Se}(N / G)$

- $\tilde{\gamma}$ is a geodesic and $l(\tilde{\gamma})=d(\tilde{p}, N)$

$$
\Longrightarrow \tilde{\gamma}^{\prime}(1) \in \mathscr{H}_{\tilde{\gamma}(1)} \Longrightarrow \tilde{\gamma}^{(t) \in \mathscr{H}_{\tilde{\gamma}}(t)}
$$

$\downarrow \pi$

- $\tilde{\gamma}$ is a geodesic and $l(\tilde{\gamma})=d(\tilde{p}, N)$ $\Longrightarrow \tilde{\gamma}^{\prime}(1) \in \mathscr{H}_{\hat{\gamma}}(1) \Longrightarrow \tilde{\gamma}^{\prime}(t) \in \mathscr{H}_{\tilde{\gamma}(t)}$
$\Longrightarrow \tilde{\gamma}$ is a horizontal geodesic

$\tilde{p}^{\sim} \xrightarrow{\tilde{\gamma}} \quad{ }^{q} /\left(/\left({ }_{N}\right.\right.$

- $\tilde{\gamma}$ is a geodesic and $l(\tilde{\gamma})=d(\tilde{p}, N)$ $\Longrightarrow \tilde{\gamma}^{\prime}(1) \in \mathscr{H}_{\hat{\gamma}(1)} \Longrightarrow \tilde{\gamma}^{\prime}(t) \in \mathscr{H}_{\hat{\gamma}(t)}$ $\Longrightarrow \tilde{\gamma}$ is a horizontal geodesic $\Longrightarrow \gamma$ is a geodesic.
- $\tilde{\gamma}$ is a geodesic and $l(\tilde{\gamma})=d(\tilde{p}, N)$ $\Longrightarrow \tilde{\gamma}^{\prime}(1) \in \mathscr{H}_{\hat{\gamma}}(1) \Longrightarrow \tilde{\gamma}^{\prime}(t) \in \mathscr{H}_{\tilde{\gamma}(t)}$ $\Longrightarrow \tilde{\gamma}$ is a horizontal geodesic $\Longrightarrow \gamma$ is a geodesic.
- If $\tilde{p} \in \operatorname{Se}(N)$,
- $\tilde{\gamma}$ is a geodesic and $l(\tilde{\gamma})=d(\tilde{p}, N)$ $\Longrightarrow \tilde{\gamma}^{\prime}(1) \in \mathscr{H}_{\tilde{\gamma}(1)} \Longrightarrow \tilde{\gamma}^{(}(t) \in \mathscr{H}_{\tilde{\gamma}(t)}$ $\Longrightarrow \tilde{\gamma}$ is a horizontal geodesic $\Longrightarrow \gamma$ is a geodesic.
- If $\tilde{p} \in \operatorname{Se}(N)$, then there exists two N-geodesic, say $\tilde{\gamma}$ and $\tilde{\eta}$.
- $\tilde{\gamma}$ is a geodesic and $l(\tilde{\gamma})=d(\tilde{p}, N)$ $\Longrightarrow \tilde{\gamma}^{\prime}(1) \in \mathscr{H}_{\hat{\gamma}}(1) \Longrightarrow \tilde{\gamma}(t) \in \mathscr{H}_{\tilde{\gamma}(t)}$ $\Longrightarrow \tilde{\gamma}$ is a horizontal geodesic $\Longrightarrow \gamma$ is a geodesic.
- If $\tilde{p} \in \operatorname{Se}(N)$, then there exists two N-geodesic, say $\tilde{\gamma}$ and $\tilde{\eta}$. Due to uniqueness of horizontal lift, both will project to distinct geodesic and lengths are same.
- $\tilde{\gamma}$ is a geodesic and $l(\tilde{\gamma})=d(\tilde{p}, N)$ $\Longrightarrow \tilde{\gamma}^{\prime}(1) \in \mathscr{H}_{\hat{\gamma}}(1) \Longrightarrow \tilde{\gamma}(t) \in \mathscr{H}_{\tilde{\gamma}(t)}$
$\Longrightarrow \tilde{\gamma}$ is a horizontal geodesic $\Longrightarrow \gamma$ is a geodesic.
- If $\tilde{p} \in \operatorname{Se}(N)$, then there exists two N-geodesic, say $\tilde{\gamma}$ and $\tilde{\eta}$. Due to uniqueness of horizontal lift, both will project to distinct geodesic and lengths are same. Note that $\tilde{\gamma}$ is an N-geodesic implies γ will be an N / G-geodesic.
- $\tilde{\gamma}$ is a geodesic and $l(\tilde{\gamma})=d(\tilde{p}, N)$ $\Longrightarrow \tilde{\gamma}^{\prime}(1) \in \mathscr{H}_{\hat{\gamma}}(1) \Longrightarrow \tilde{\gamma}(t) \in \mathscr{H}_{\tilde{\gamma}(t)}$ $\Longrightarrow \tilde{\gamma}$ is a horizontal geodesic $\Longrightarrow \gamma$ is a geodesic.
- If $\tilde{p} \in \operatorname{Se}(N)$, then there exists two N-geodesic, say $\tilde{\gamma}$ and $\tilde{\eta}$. Due to uniqueness of horizontal lift, both will project to distinct geodesic and lengths are same. Note that $\tilde{\gamma}$ is an N-geodesic implies γ will be an N / G-geodesic. Otherwise, $\exists \delta$ which is N / G geodesic joining p to N / G

- $\tilde{\gamma}$ is a geodesic and $l(\tilde{\gamma})=d(\tilde{p}, N)$ $\Longrightarrow \tilde{\gamma}^{\prime}(1) \in \mathscr{H}_{\tilde{\gamma}(1)} \Longrightarrow \tilde{\gamma}(t) \in \mathscr{H}_{\hat{\gamma}(t)}$ $\Longrightarrow \tilde{\gamma}$ is a horizontal geodesic $\Longrightarrow \gamma$ is a geodesic.
- If $\tilde{p} \in \operatorname{Se}(N)$, then there exists two N-geodesic, say $\tilde{\gamma}$ and $\tilde{\eta}$. Due to uniqueness of horizontal lift, both will project to distinct geodesic and lengths are same. Note that $\tilde{\gamma}$ is an N-geodesic implies γ will be an N / G-geodesic. Otherwise, $\exists \delta$ which is N / G geodesic joining p to N / G which gives a horizontal lift $\tilde{\delta}$ whose length is strictly less than $\tilde{\gamma}$,

- $\tilde{\gamma}$ is a geodesic and $l(\tilde{\gamma})=d(\tilde{p}, N)$ $\Longrightarrow \tilde{\gamma}^{\prime}(1) \in \mathscr{H}_{\tilde{\gamma}(1)} \Longrightarrow \tilde{\gamma}(t) \in \mathscr{H}_{\hat{\gamma}(t)}$ $\Longrightarrow \tilde{\gamma}$ is a horizontal geodesic $\Longrightarrow \gamma$ is a geodesic.
- If $\tilde{p} \in \operatorname{Se}(N)$, then there exists two N-geodesic, say $\tilde{\gamma}$ and $\tilde{\eta}$. Due to uniqueness of horizontal lift, both will project to distinct geodesic and lengths are same. Note that $\tilde{\gamma}$ is an N-geodesic implies γ will be an N / G-geodesic. Otherwise, $\exists \delta$ which is N / G geodesic joining p to N / G which gives a horizontal lift $\tilde{\delta}$ whose length is strictly less than $\tilde{\gamma}$, a contradiction.

Applications

Cut locus of projective planes

Let

$$
\mathbb{S}_{i}^{k}=\left\{\left(x_{0}, \cdots, x_{k}, 0, \cdots, 0\right)\right\} \subseteq \mathbb{S}^{n}
$$

Cut locus of projective planes

Let

$$
\begin{aligned}
\mathbb{S}_{i}^{k} & =\left\{\left(x_{0}, \cdots, x_{k}, 0, \cdots, 0\right)\right\} \subseteq \mathbb{S}^{n} \\
\mathbb{S}_{f}^{n-k-1} & =\left\{\left(0, \cdots, 0, x_{k+1}, x_{k+2}, \cdots, x_{n}\right)\right\} \subseteq \mathbb{S}^{n}
\end{aligned}
$$

Cut locus of projective planes

Let

$$
\begin{aligned}
\mathbb{S}_{i}^{k} & =\left\{\left(x_{0}, \cdots, x_{k}, 0, \cdots, 0\right)\right\} \subseteq \mathbb{S}^{n} \\
\mathbb{S}_{f}^{n-k-1} & =\left\{\left(0, \cdots, 0, x_{k+1}, x_{k+2}, \cdots, x_{n}\right)\right\} \subseteq \mathbb{S}^{n}
\end{aligned}
$$

Then we have

Cut locus of projective planes

Let

$$
\begin{aligned}
\mathbb{S}_{i}^{k} & =\left\{\left(x_{0}, \cdots, x_{k}, 0, \cdots, 0\right)\right\} \subseteq \mathbb{S}^{n} \\
\mathbb{S}_{f}^{n-k-1} & =\left\{\left(0, \cdots, 0, x_{k+1}, x_{k+2}, \cdots, x_{n}\right)\right\} \subseteq \mathbb{S}^{n}
\end{aligned}
$$

Then we have

- $\mathrm{Cu}\left(\mathbb{S}_{i}^{k}\right)=\mathbb{S}_{f}^{n-k-1}$.

Cut locus of projective planes

Let

$$
\begin{aligned}
\mathbb{S}_{i}^{k} & =\left\{\left(x_{0}, \cdots, x_{k}, 0, \cdots, 0\right)\right\} \subseteq \mathbb{S}^{n} \\
\mathbb{S}_{f}^{n-k-1} & =\left\{\left(0, \cdots, 0, x_{k+1}, x_{k+2}, \cdots, x_{n}\right)\right\} \subseteq \mathbb{S}^{n}
\end{aligned}
$$

Then we have

- $\mathrm{Cu}\left(\mathbb{S}_{i}^{k}\right)=\mathbb{S}_{f}^{n-k-1}$.
- $\mathrm{Cu}\left(\mathbb{R} \mathbb{P}_{i}^{k}\right)=\mathbb{R} \mathbb{P}_{f}^{n-k-1}$.

Cut locus of projective planes

Let

$$
\begin{aligned}
\mathbb{S}_{i}^{k} & =\left\{\left(x_{0}, \cdots, x_{k}, 0, \cdots, 0\right)\right\} \subseteq \mathbb{S}^{n} \\
\mathbb{S}_{f}^{n-k-1} & =\left\{\left(0, \cdots, 0, x_{k+1}, x_{k+2}, \cdots, x_{n}\right)\right\} \subseteq \mathbb{S}^{n}
\end{aligned}
$$

Then we have

- $\mathrm{Cu}\left(\mathbb{S}_{i}^{k}\right)=\mathbb{S}_{f}^{n-k-1}$.
- $\mathrm{Cu}\left(\mathbb{R P}_{i}^{k}\right)=\mathbb{R}_{f}^{n-k-1}$.
- $\mathrm{Cu}\left(\mathbb{C P}_{i}^{k}\right)=\mathbb{C P}_{f}^{n-k-1}$.

Cut locus of complex hypersurface

- Define the set $X(d)=\left\{[\mathbf{z}] \in \mathbb{C P}^{n}: \sum_{i=0}^{n} z_{i}^{d}=0\right\}$.

Cut locus of complex hypersurface

- Define the set $X(d)=\left\{[\mathbf{z}] \in \mathbb{C P}^{n}: \sum_{i=0}^{n} z_{i}^{d}=0\right\}$.
- Since the partial derivatives $\frac{\partial f}{\partial z_{j}}$ do not vanish simultaneously on $\mathbb{C}^{n+1}-\{0\}$, the hypersurface is nonsingular.

Cut locus of complex hypersurface

- Define the set $X(d)=\left\{[\mathbf{z}] \in \mathbb{C P}^{n}: \sum_{i=0}^{n} z_{i}^{d}=0\right\}$.
- Since the partial derivatives $\frac{\partial f}{\partial z_{j}}$ do not vanish simultaneously on $\mathbb{C}^{n+1}-\{0\}$, the hypersurface is nonsingular.
- The above hypersurface is well studied by Kulkarni and Wood [2].

Cut locus of complex hypersurface

- Define the set $X(d)=\left\{[\mathbf{z}] \in \mathbb{C P}^{n}: \sum_{i=0}^{n} z_{i}^{d}=0\right\}$.
- Since the partial derivatives $\frac{\partial f}{\partial z_{j}}$ do not vanish simultaneously on $\mathbb{C}^{n+1}-\{0\}$, the hypersurface is nonsingular.
- The above hypersurface is well studied by Kulkarni and Wood [2].
- Define $\tilde{X}(d)=\left\{\mathbf{z} \in \mathbb{S}^{2 n+1}: \sum_{i=0}^{n} z_{i}^{d}=0\right\}$.

Cut locus of complex hypersurface

- Define the set $X(d)=\left\{[\mathbf{z}] \in \mathbb{C P}^{n}: \sum_{i=0}^{n} z_{i}^{d}=0\right\}$.
- Since the partial derivatives $\frac{\partial f}{\partial z_{j}}$ do not vanish simultaneously on $\mathbb{C}^{n+1}-\{0\}$, the hypersurface is nonsingular.
- The above hypersurface is well studied by Kulkarni and Wood [2].
- Define $\tilde{X}(d)=\left\{\mathbf{z} \in \mathbb{S}^{2 n+1}: \sum_{i=0}^{n} z_{i}^{d}=0\right\}$.

Theorem (Basu, S. and Prasad, S.)
The cut locus of $\tilde{X}(d) \subseteq \mathbb{S}^{2 n+1}$ is $\mathbb{Z}_{d}^{\star(n+1)} \times_{\mathbb{Z}_{d}} \mathbb{S}^{1}$.
S. Basu and S. Prasad, A connection between cut locus, Thom space and Morse-Bott functions. https://arxiv.org/abs/2011.02972 accepted in Algebraic \& Geometric Topology.

國 R. S. Kulkarni and J. W. Wood, Topology of nonsingular complex hypersurfaces, Adv. in Math., 35 (1980), pp. 239-263.

Thank you for your attention!

